174 research outputs found
Home telehealth in older patients with heart failure â costs, adherence, and outcomes
Susanna Spinsante Dipartimento di Ingegneria dell'Informazione, UniversitĂ Politecnica delle Marche, Ancona, Italy Abstract: This short review discusses the role of telehealth technologies in the management of older patients with heart failure, from different perspectives. Instead of providing a systematic overview of existing literature in the field, this paper provides evidence for a simple, but effective, paradigm upon which a telehealth system may be built, and highlights how such a model may successfully apply to heart failure management, to improve patients' quality of life after discharge, increase independency, and reduce readmissions and costs for the public health institutions. A few examples are discussed, to show the real applicability of the proposed model and further confirm the effectiveness of telehealth, when properly designed and tailored to users' needs. Keywords: remote health care, workflow, requirement
Radar and RGB-depth sensors for fall detection: a review
This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and usersâ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing
NFC-based user interface for smart environments
The physical support of a home automation system, joined with a simplified user-system interaction modality, may allow people affected by motor impairments or limitations, such as elderly and disabled people, to live safely and comfortably at home, by improving their autonomy and facilitating the execution of daily life tasks. The proposed solution takes advantage of the Near Field Communications technology, which is simple and intuitive to use, to enable advanced user interaction. The user can perform normal daily activities, such as lifting a gate or closing a window, through a device enabled to read NFC tags containing the commands for the home automation system. A passive Smart Panel is implemented, composed of multiple Near Field Communications tags properly programmed, to enable the execution of both individual commands and so-calledscenarios. The work compares several versions of the proposed Smart Panel, differing for interrogation and composition of the single command, number of tags, and dynamic user interaction model, at a parity of the number of commands to issue. Main conclusions are drawn from the experimental results, about the effective adoption of Near Field Communications in smart assistive environments
DSA with SHA-1 for Space Telecommand Authentication: Analysis and Results
The issue of securing Telecommand data communications in civil and commercial space missions, by means of properly located security services and primitives, has been debated within the Security Working Group of the Consultative Committee for Space Data Systems since several months. In the context of Telecommand transmissions, that can be vital in determining a successful operational behavior of a space system, the interest is mainly focused on authentication, more than encryption. The object of this paper is to investigate, under the perspective of computational overhead, the possible applicability of a standard scheme, Digital Signature Algorithm with SHA- 1, to the authentication of Telecommand data structures, and to discuss the pros and cons related to its adoption in such a peculiar context, through numerical simulations and comparison with an alternative solution relying on the widely used MD5 hash algorithm
Full-length non-linear binary sequences with Zero Correlation Zone for multiuser communications
The research on new sets of sequences to be used asspreading codes in multiple user communications is still an activearea, despite the great amount of literature available since manyyears on this topic. In fact, new paradigms like dense anddecentralized wireless networks, where there is no centralcontroller to assign the resources to the nodes, are revamping theinterest on large sets of sequences providing adequate correlationproperties to support a big number of nodes, in potentially hostilechannels. This paper focuses on the Zero Correlation Zone (ZCZ)property exhibited by a family of non-linear binary sequencesfeaturing a great cardinality of their set and good securityrelatedfeatures, and provides evidence of their suitability tomultiuser communications, in channels affected by multipath
Binary De Bruijn sequences for DS-CDMA systems: analysis and results
Abstract Code division multiple access (CDMA) using direct sequence (DS) spread spectrum modulation provides multiple access capability essentially thanks to the adoption of proper sequences as spreading codes. The ability of a DS-CDMA receiver to detect the desired signal relies to a great extent on the auto-correlation properties of the spreading code associated to each user; on the other hand, multi-user interference rejection depends on the cross-correlation properties of all the spreading codes in the considered set. As a consequence, the analysis of new families of spreading codes to be adopted in DS-CDMA is of great interest. This article provides results about the evaluation of specific full-length binary sequences, the De Bruijn ones, when applied as spreading codes in DS-CDMA schemes, and compares their performance to other families of spreading codes commonly used, such as m-sequences, Gold, OVSF, and Kasami sequences. While the latter sets of sequences have been specifically designed for application in multi-user communication contexts, De Bruijn sequences come from combinatorial mathematics, and have been applied in completely different scenarios. Considering the similarity of De Bruijn sequences to random sequences, we investigate the performance resulting by applying them as spreading codes. The results herein presented suggest that binary De Bruijn sequences, when properly selected, may compete with more consolidated options, and encourage further investigation activities, specifically focused on the generation of longer sequences, and the definition of correlation-based selection criteria
An Optimized Dynamic Scene Change Detection Algorithm for H.264/AVC Encoded Video Sequences
Scene change detection plays an important role in a number of video applications, including video indexing, semantic features extraction, and, in general, pre- and post-processing operations. This paper deals with the design and performance evaluation of a dynamic scene change detector optimized for H.264/AVC encoded video sequences. The detector is based on a dynamic threshold that adaptively tracks different features of the video sequence, to increase the whole scheme accuracy in correctly locating true scene changes. The solution has been tested on suitable video sequences resembling real-world videos thanks to a number of different motion features, and has provided good performance without requiring an increase in decoder complexity. This is a valuable issue, considering the possible application of the proposed algorithm in post-processing operations, such as error concealment for video decoding in typical error prone video transmission environments, such as wireless networks
Human Action Recognition with RGB-D Sensors
Human action recognition, also known as HAR, is at the foundation of many different applications related to behavioral analysis, surveillance, and safety, thus it has been a very active research area in the last years. The release of inexpensive RGB-D sensors fostered researchers working in this field because depth data simplify the processing of visual data that could be otherwise difficult using classic RGB devices. Furthermore, the availability of depth data allows to implement solutions that are unobtrusive and privacy preserving with respect to classic video-based analysis. In this scenario, the aim of this chapter is to review the most salient techniques for HAR based on depth signal processing, providing some details on a specific method based on temporal pyramid of key poses, evaluated on the well-known MSR Action3D dataset
Multi-household energy management in a smart neighborhood in the presence of uncertainties and electric vehicles
none4noThe pathway toward the reduction of greenhouse gas emissions is dependent upon increasing Renewable Energy Sources (RESs), demand response, and electrification of public and private transportation. Energy management techniques are necessary to coordinate the operation in this complex scenario, and in recent years several works have appeared in the literature on this topic. This paper presents a study on multi-household energy management for Smart Neighborhoods integrating RESs and electric vehicles participating in Vehicle-to-Home (V2H) and Vehicle-to-Neighborhood (V2N) programs. The Smart Neighborhood comprises multiple households, a parking lot with public charging stations, and an aggregator that coordinates energy transactions using a Multi-Household Energy Manager (MH-EM). The MH-EM jointly maximizes the profits of the aggregator and the households by using the augmented É-constraint approach. The generated Pareto optimal solutions allow for different decision policies to balance the aggregatorâs and householdsâ profits, prioritizing one of them or the RES energy usage within the Smart Neighborhood. The experiments have been conducted over an entire year considering uncertainties related to the energy price, electric vehicles usage, energy production of RESs, and energy demand of the households. The results show that the MH-EM optimizes the Smart Neighborhood operation and that the solution that maximizes the RES energy usage provides the greatest benefits also in terms of peak-shaving and valley-filling capability of the energy demand.openLuca Serafini, Emanuele Principi, Susanna Spinsante, Stefano SquartiniSerafini, Luca; Principi, Emanuele; Spinsante, Susanna; Squartini, Stefan
A Wearable Fall Detection System based on LoRa LPWAN Technology
Several technological solutions now available in the
market offer the possibility of increasing the independent life
of people who by age or pathologies otherwise need assistance.
In particular, internet-connected wearable solutions are of considerable interest, as they allow continuous monitoring of the
user. However, their use poses different challenges, from the real
usability of a device that must still be worn to the performance
achievable in terms of radio connectivity and battery life. The
acceptability of a technology solution, by a user who would still
benefit from its use, is in fact often conditioned by practical
problems that impact the personâs normal lifestyle. The technological choices adopted in fact strongly determine the success
of the proposed solution, as they may imply limitations both
to the person who uses it and to the achievable performance.
In this document, targeting the case of a fall detection sensor
based on a pair of sensorized shoes, the effectiveness of a real
implementation of an Internet of Things technology is examined.
It is shown how alarming events, generated in a metropolitan
context, are effectively sent to a supervision system through
Low Power Wide Area Network technology without the need
for a portable gateway. The experimental results demonstrate
the effectiveness of the chosen technology, which allows the user
to take advantage of the support of a wearable sensor without
being forced to substantially change his lifestyle
- âŠ