27 research outputs found

    Development of a dialysis in vitro release method for biodegradable microspheres

    No full text
    The purpose of this research was to develop a simple and convenient in vitro release method for biodegradable microspheres using a commercially available dialyzer. A 25 KD MWCO Float-a-Lyzer was used to evaluate peptide diffusion at 37°C and 55°C in different buffers and assess the effect of peptide concentration. In vitro release of Leuprolide from PLGA microspheres, having a 1-month duration of action, was assessed using the dialyzer and compared with the commonly used “sample and separate” method with and without agitation. Peptide diffusion through the dialysis membrane was rapid at 37°C and 55°C in all buffers and was independent of peptide concentration. There was no detectable binding to the membrane under the conditions of the study. In vitro release of Leuprolide from PLGA microspheres was tri-phasic and was complete in 28 days with the dialysis technique. With the sample and separate technique, linear release profiles were obtained with complete release occurring under conditions of agitation. Diffusion through the dialysis membrane was sufficiently rapid to qualify the Float-a-Lyzer for an in vitro release system for microparticulate dosage forms. Membrane characteristics render it useful to study drug release under real-time and accelerated conditions

    Extensive identification of genes involved in congenital and structural heart disorders and cardiomyopathy

    Get PDF
    Clinical presentation of congenital heart disease is heterogeneous, making identification of the disease-causing genes and their genetic pathways and mechanisms of action challenging. By using in vivo electrocardiography, transthoracic echocardiography and microcomputed tomography imaging to screen 3,894 single-gene-null mouse lines for structural and functional cardiac abnormalities, here we identify 705 lines with cardiac arrhythmia, myocardial hypertrophy and/or ventricular dilation. Among these 705 genes, 486 have not been previously associated with cardiac dysfunction in humans, and some of them represent variants of unknown relevance (VUR). Mice with mutations in Casz1, Dnajc18, Pde4dip, Rnf38 or Tmem161b genes show developmental cardiac structural abnormalities, with their human orthologs being categorized as VUR. Using UK Biobank data, we validate the importance of the DNAJC18 gene for cardiac homeostasis by showing that its loss of function is associated with altered left ventricular systolic function. Our results identify hundreds of previously unappreciated genes with potential function in congenital heart disease and suggest causal function of five VUR in congenital heart disease
    corecore