5,471 research outputs found

    Practical Broad-Band Tuning of Dye Lasers by Solvent Shifting

    Get PDF
    We have operated a dye laser over a broad wavelength range (593.8-667.0nm) by shifting the dye emission profile with incremental changes of solvent composition. This was accomplished with the laser operating continuously, and only minor adjustment of the laser optics was required. Solvent tuning was facilitated by the critical dependence of the optimum laser wavelength on concentration of the second solvent. Using the known solvent-sensitive laser dye 9-diethylaminobenzo[a]phenoxaz-5-one (DBP), 87% of the tuning range from pure xylenes to pure methanol was covered by cumulative addition of 24 vol. % methanol to the starting xylenes solution. The optimum dye concentration was found to be independent of solvent composition, so that maximum laser power could be maintained by mixing equimolar dye solutions in the two solvents. These results establish the practicality of solvent-tuning as a method of conducting laser experiments over a broad wavelength range

    A Novel Dopamine Receptor Signaling Unit in Brain: Heterooligomers of D1 And D2 Dopamine Receptors

    Get PDF
    The ability of G protein coupled receptors to heterooligomerize and create novel signaling complexes has demonstrated the tremendous potential of these receptors to access diverse signaling cascades, as well as to modulate the nature of the transduced signal. In the dopamine receptor field, the existence of a D1-like receptor in brain that activated phospatidylinositol turnover has been shown, but definition of the molecular entity remained elusive. We discovered that the D1 and D2 receptors form a heterooligomer, which on activation of both receptors, coupled to Gq to activate phospholipase C and generate intracellular calcium release. The activation of Gq by the D1-D2 heterooligomer has been shown to occur in cells expressing both receptors, as well as in striatum, distinct from Gs/olf or Gi/o activation by the D1 and D2 receptor homooligomers, respectively. The activation of the D1-D2 receptor heterooligomer in brain led to a calcium signal–mediated increase in phosphorylation of calmodulin kinase lla. The calcium signal rapidly desensitized and the receptors cointernalized after occupancy of either the D1 or D2 binding pocket. Thus, the D1-D2 heterooligomer directly links the action of dopamine to rapid calcium signaling and likely has important effects on dopamine-mediated synaptic plasticity and its functional correlates in brain

    Mass Transit Policy: Responding to COVID-19

    Get PDF
    Mass transit is vital to daily life in U.S. cities and many other cities throughout the world. Mass transit systems are vulnerable to pandemics like COVID-19 and other less serious threats. Post COVID-19 mass transit policy must be different than its predecessors if mass transit is to provide a reliable, sustainable, and equitable means of transportation. Future mass transit systems will be the outcome of public health, technological, economic, and political considerations. This paper provides an initial attempt to identify and discuss these four considerations as most relevant to the development of an equitable and efficient mass transit policy for rail and bus systems

    Genome-wide association study identifies common and low-frequency variants at the AMHgene locus that strongly predict serum AMH levels in males

    Get PDF
    Anti-Müllerian hormone (AMH) is an essential messenger of sexual differentiation in the foetus and is an emerging biomarker of postnatal reproductive function in females. Due to a paucity of adequately sized studies, the genetic determinants of circulating AMH levels are poorly characterized. In samples from 2815 adolescents aged 15 from the ALSPAC study, we performed the first genome-wide association study of serum AMH levels across a set of ∼9 M ‘1000 Genomes Reference Panel’ imputed genetic variants. Genetic variants at the AMH protein-coding gene showed considerable allelic heterogeneity, with both common variants [rs4807216 (PMale = 2 × 10−49, Beta: ∼0.9 SDs per allele), rs8112524 (PMale = 3 × 10−8, Beta: ∼0.25)] and low-frequency variants [rs2385821 (PMale = 6 × 10−31, Beta: ∼1.2, frequency 3.6%)] independently associated with apparently large effect sizes in males, but not females. For all three SNPs, we highlight mechanistic links to AMH gene function and demonstrate highly significant sex interactions (PHet 0.0003–6.3 × 10−12), culminating in contrasting estimates of trait variance explained (24.5% in males versus 0.8% in females). Using these SNPs as a genetic proxy for AMH levels, we found no evidence in additional datasets to support a biological role for AMH in complex traits and diseases in men

    Dopamine D1-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance

    Get PDF
    Dopamine is an important catecholamine neurotransmitter modulating many physiological functions, and is linked to psychopathology of many diseases such as schizophrenia and drug addiction. Dopamine D1 and D2 receptors are the most abundant dopaminergic receptors in the striatum, and although a clear segregation between the pathways expressing these two receptors has been reported in certain subregions, the presence of D1-D2 receptor heteromers within a unique subset of neurons, forming a novel signaling transducing functional entity has been shown. Recently, significant progress has been made in elucidating the signaling pathways activated by the D1-D2 receptor heteromer and their potential physiological relevance

    Roger Llewellyn Dunmore Cribb Obituary (1948 - 2007)

    Get PDF
    This publication does not have an abstract. The first two paragraphs of this article are displayed as the abstract. Many people knew Roger Cribb, or we thought we did. Since he died on Sunday 26 August 2007 in Cairns, north Queensland, a variety of people have written about the Roger they knew (for example, the obituaries by his ex-wife and friend Gulcin Cribb (2007) and the Wikipedia page put together by Bruce White (2007)). The questions many of us now ask ourselves are 'How many Rogers were there?' and 'Where did the Roger we know fit in?' I was asked to write this obituary and I was happy to do so as I admired Roger's tenacity and his genuine concern for Aboriginal peoples in Cape York. However, I felt inadequate for the task on my own and so sought input from two other north Queenslanders who knew him well, Bruce White and George Skeene. Bruce worked with Roger at Tharpuntoo Legal Service and George is a Yirrganydji Traditional Owner with whom Roger worked on a voluntary basis over many years, helping him to map and record the archaeological sites of his people

    Dual Benefits of a Student-Assisted Interprofessional Men’s Healthy Lifestyle Pilot Program

    Get PDF
    Reprinted by permission of SAGE PublicationsMen are less willing to seek health professional advice than women and die more often than women from preventable causes. Therefore, it is important to increase male engagement with health initiatives. This study reports the outcomes of a student-assisted, interprofessional, 12-week health program for overweight adult males. The program included weekly health education and structured, supervised group exercise sessions. Thirteen males (participants) and 18 university students (session facilitators) completed the program. Participants were assessed for a range of health and physical activity measures and health and health profession knowledge. Participants demonstrated significant improvement in activity, knowledge, and perceptions of physical and mental function, and appreciated the guided, group sessions. Students completed an interprofessional readiness questionnaire and reported significant improvement in the understanding of the benefits of interprofessional education and of their role in health care. This program provides evidence of the dual benefit that occurs from the delivery of a student-assisted, interprofessional men’s health program to at-risk community members

    Flight Mechanics and Control of Escape Manoeuvres in Hummingbirds. I. Flight Kinematics

    Get PDF
    Hummingbirds are nature’s masters of aerobatic manoeuvres. Previous research shows that hummingbirds and insects converged evolutionarily upon similar aerodynamic mechanisms and kinematics in hovering. Herein, we use three-dimensional kinematic data to begin to test for similar convergence of kinematics used for escape flight and to explore the effects of body size upon manoeuvring. We studied four hummingbird species in North America including two large species (magnificent hummingbird, Eugenes fulgens, 7.8 g, and blue-throated hummingbird, Lampornis clemenciae, 8.0 g) and two smaller species (broad-billed hummingbird, Cynanthus latirostris, 3.4 g, and black-chinned hummingbirds Archilochus alexandri, 3.1 g). Starting from a steady hover, hummingbirds consistently manoeuvred away from perceived threats using a drastic escape response that featured body pitch and roll rotations coupled with a large linear acceleration. Hummingbirds changed their flapping frequency and wing trajectory in all three degrees of freedom on a stroke-by-stroke basis, likely causing rapid and significant alteration of the magnitude and direction of aerodynamic forces. Thus it appears that the flight control of hummingbirds does not obey the ‘helicopter model’ that is valid for similar escape manoeuvres in fruit flies. Except for broad-billed hummingbirds, the hummingbirds had faster reaction times than those reported for visual feedback control in insects. The two larger hummingbird species performed pitch rotations and global-yaw turns with considerably larger magnitude than the smaller species, but roll rates and cumulative roll angles were similar among the four species

    The Dopamine D1–D2 Receptor Heteromer in Striatal Medium Spiny Neurons: Evidence for a Third Distinct Neuronal Pathway in Basal Ganglia

    Get PDF
    Dopaminergic signaling within the basal ganglia has classically been thought to occur within two distinct neuronal pathways; the direct striatonigral pathway which contains the dopamine D1 receptor and the neuropeptides dynorphin (DYN) and substance P, and the indirect striatopallidal pathway which expresses the dopamine D2 receptor and enkephalin (ENK). A number of studies have also shown, however, that D1 and D2 receptors can co-exist within the same medium spiny neuron and emerging evidence indicates that these D1/D2-coexpressing neurons, which also express DYN and ENK, may comprise a third neuronal pathway, with representation in both the striatonigral and striatopallidal projections of the basal ganglia. Furthermore, within these coexpressing neurons it has been shown that the dopamine D1 and D2 receptor can form a novel and pharmacologically distinct receptor complex, the dopamine D1–D2 receptor heteromer, with unique signaling properties. This is indicative of a functionally unique role for these neurons in brain. The aim of this review is to discuss the evidence in support of a novel third pathway coexpressing the D1 and D2 receptor, to discuss the potential relevance of this pathway to basal ganglia signaling, and to address its potential value, and that of the dopamine D1–D2 receptor heteromer, in the search for new therapeutic strategies for disorders involving dopamine neurotransmission

    Flight Mechanics and Control of Escape Manoeuvres in Hummingbirds. II. Aerodynamic Force Production, Flight Control and Performance Limitations

    Get PDF
    The superior manoeuvrability of hummingbirds emerges from complex interactions of specialized neural and physiological processes with the unique flight dynamics of flapping wings. Escape manoeuvring is an ecologically relevant, natural behaviour of hummingbirds, from which we can gain understanding into the functional limits of vertebrate locomotor capacity. Here, we extend our kinematic analysis of escape manoeuvres from a companion paper to assess two potential limiting factors of the manoeuvring performance of hummingbirds: (1) muscle mechanical power output and (2) delays in the neural sensing and control system. We focused on the magnificent hummingbird (Eugenes fulgens, 7.8 g) and the black-chinned hummingbird (Archilochus alexandri, 3.1 g), which represent large and small species, respectively. We first estimated the aerodynamic forces, moments and the mechanical power of escape manoeuvres using measured wing kinematics. Comparing active-manoeuvring and passive-damping aerodynamic moments, we found that pitch dynamics were lightly damped and dominated by the effect of inertia, while roll dynamics were highly damped. To achieve observed closed-loop performance, pitch manoeuvres required faster sensorimotor transduction, as hummingbirds can only tolerate half the delay allowed in roll manoeuvres. Accordingly, our results suggested that pitch control may require a more sophisticated control strategy, such as those based on prediction. For the magnificent hummingbird, we estimated that escape manoeuvres required muscle mass-specific power 4.5 times that during hovering. Therefore, in addition to the limitation imposed by sensorimotor delays, muscle power could also limit the performance of escape manoeuvres
    corecore