159 research outputs found

    Chromosome organization in 4D: insights from C. elegans development

    Get PDF
    Eukaryotic genome organization is ordered and multilayered, from the nucleosome to chromosomal scales. These layers are not static during development, but are remodeled over time and between tissues. Thus, animal model studies with high spatiotemporal resolution are necessary to understand the various forms and functions of genome organization in vivo. In C. elegans, sequencing- and imaging-based advances have provided insight on how histone modifications, regulatory elements, and large-scale chromosome conformations are established and changed. Recent observations include unexpected physiological roles for topologically associating domains, different roles for the nuclear lamina at different chromatin scales, cell-type-specific enhancer and promoter regulatory grammars, and prevalent compartment variability in early development. Here, we summarize these and other recent findings in C. elegans, and suggest future avenues of research to enrich our in vivo knowledge of the forms and functions of nuclear organization

    Wormnet: a crystal ball for Caenorhabditis elegans

    Get PDF
    An integrated gene network for Caenorhabditis elegans encompasses most protein-coding genes

    Multiplex DNA fluorescence in situ hybridization to analyze maternal vs. paternal C. elegans chromosomes

    Get PDF
    Recent advances in high-throughput microscopy have paved the way to study chromosome organization at the single-molecule level and have led to a better understanding of genome organization in space and time. During development, distinct maternal and paternal contributions ensure the formation of an embryo proper, yet little is known about the organization of chromosomes inherited from mothers versus fathers. To tackle this question, we have modified single-molecule chromosome tracing to distinguish between the chromosomes of two well-studied strains of C. elegans called Bristol and Hawai'ian. We find that chromosomes from these two strains have similar folding patterns in homozygous hermaphrodites. However, crosses between Bristol and Hawai'ian animals reveal that the paternal chromosome adopts the folding parameters of the maternal chromosome in embryos. This is accomplished by an increase in the polymer step size and decompaction of the chromosome. The data indicate that factors from the mother impact chromosome folding in trans. We also characterize the degree of intermixing between homologues within the chromosome territories. Sister chromosomes overlap frequently in C. elegans embryos, but pairing between homologues is rare, suggesting that transvection is unlikely to occur. This method constitutes a powerful tool to investigate chromosome architecture from mothers and fathers

    The PHA-4 Gene is Required to Generate the Pharyngeal Primordium of Caenorhabditis-Elegans

    Get PDF
    In the 4-cell Caenorhabditis elegans embryo, two blastomeres are destined to generate pharyngeal cells, each by a distinct developmental strategy: one pathway is inductive, while the other is autonomous. Here, we identify the pha-4 locus. In animals lacking pha-4 activity, an early step in pharyngeal organogenesis is blocked: no pharyngeal primordium is formed and differentiated pharyngeal cells are absent. Most other tissues are generated normally in pha-4 mutants, including cells related to pharyngeal cells by cell lineage and position. Thus, pha-4 activity is required to form the pharyngeal primordium. We propose that pha-4 marks a convergence of the inductive and autonomous pathways of pharyngeal development and suggest that establishment of pharyngeal organ identity is a crucial step for pharyngeal organogenesis

    Temporal Regulation of Foregut Development by HTZ-1/H2A.Z and PHA-4/FoxA

    Get PDF
    The histone variant H2A.Z is evolutionarily conserved and plays an essential role in mice, Drosophila, and Tetrahymena. The essential function of H2A.Z is unknown, with some studies suggesting a role in transcriptional repression and others in activation. Here we show that Caenorhabditis elegans HTZ-1/H2A.Z and the remodeling complex MYS-1/ESA1–SSL-1/SWR1 synergize with the FoxA transcription factor PHA-4 to coordinate temporal gene expression during foregut development. We observe dramatic genetic interactions between pha-4 and htz-1, mys-1, and ssl-1. A survey of transcription factors reveals that this interaction is specific, and thus pha-4 is acutely sensitive to reductions in these three proteins. Using a nuclear spot assay to visualize HTZ-1 in living embryos as organogenesis proceeds, we show that HTZ-1 is recruited to foregut promoters at the time of transcriptional onset, and this recruitment requires PHA-4. Loss of htz-1 by RNAi is lethal and leads to delayed expression of a subset of foregut genes. Thus, the effects of PHA-4 on temporal regulation can be explained in part by recruitment of HTZ-1 to target promoters. We suggest PHA-4 and HTZ-1 coordinate temporal gene expression by modulating the chromatin environment

    Diverse Chromatin Remodeling Genes Antagonize the Rb-Involved SynMuv Pathways in C. elegans

    Get PDF
    In Caenorhabditis elegans, vulval cell-fate specification involves the activities of multiple signal transduction and regulatory pathways that include a receptor tyrosine kinase/Ras/mitogen-activated protein kinase pathway and synthetic multivulva (SynMuv) pathways. Many genes in the SynMuv pathways encode transcription factors including the homologs of mammalian Rb, E2F, and components of the nucleosome-remodeling deacetylase complex. To further elucidate the functions of the SynMuv genes, we performed a genome-wide RNA interference (RNAi) screen to search for genes that antagonize the SynMuv gene activities. Among those that displayed a varying degree of suppression of the SynMuv phenotype, 32 genes are potentially involved in chromatin remodeling (called SynMuv suppressor genes herein). Genetic mutations of two representative genes (zfp-1 and mes-4) were used to further characterize their positive roles in vulval induction and relationships with Ras function. Our analysis revealed antagonistic roles of the SynMuv suppressor genes and the SynMuv B genes in germline-soma distinction, RNAi, somatic transgene silencing, and tissue specific expression of pgl-1 and the lag-2/Delta genes. The opposite roles of these SynMuv B and SynMuv suppressor genes on transcriptional regulation were confirmed in somatic transgene silencing. We also report the identifications of ten new genes in the RNAi pathway and six new genes in germline silencing. Among the ten new RNAi genes, three encode homologs of proteins involved in both protein degradation and chromatin remodeling. Our findings suggest that multiple chromatin remodeling complexes are involved in regulating the expression of specific genes that play critical roles in developmental decisions

    Food Deprivation Attenuates Seizures through CaMKII and EAG K+ Channels

    Get PDF
    Accumulated research has demonstrated the beneficial effects of dietary restriction on extending lifespan and increasing cellular stress resistance. However, reducing nutrient intake has also been shown to direct animal behaviors toward food acquisition. Under food-limiting conditions, behavioral changes suggest that neuronal and muscle activities in circuits that are not involved in nutrient acquisition are down-regulated. These dietary-regulated mechanisms, if understood better, might provide an approach to compensate for defects in molecules that regulate cell excitability. We previously reported that a neuromuscular circuit used in Caenorhabditis elegans male mating behavior is attenuated under food-limiting conditions. During periods between matings, sex-specific muscles that control movements of the male's copulatory spicules are kept inactive by UNC-103 ether-a-go-go–related gene (ERG)–like K+ channels. Deletion of unc-103 causes ∼30%–40% of virgin males to display sex-muscle seizures; however, when food is deprived from males, the incidence of spontaneous muscle contractions drops to 9%–11%. In this work, we used genetics and pharmacology to address the mechanisms that act parallel with UNC-103 to suppress muscle seizures in males that lack ERG-like K+ channel function. We identify calcium/calmodulin-dependent protein kinase II as a regulator that uses different mechanisms in food and nonfood conditions to compensate for reduced ERG-like K+ channel activity. We found that in food-deprived conditions, calcium/calmodulin-dependent protein kinase II acts cell-autonomously with ether-a-go-go K+ channels to inhibit spontaneous muscle contractions. Our work suggests that upregulating mechanisms used by food deprivation can suppress muscle seizures

    Translation-dependent mRNA localization to Caenorhabditis elegans adherens junctions

    Get PDF
    mRNA localization is an evolutionarily widespread phenomenon that can facilitate subcellular protein targeting. Extensive work has focused on mRNA targeting through 'zip-codes' within untranslated regions (UTRs), whereas much less is known about translation-dependent cues. Here, we examine mRNA localization in Caenorhabditis elegans embryonic epithelia. From an smFISH-based survey, we identified mRNAs associated with the cell membrane or cortex, and with apical junctions in a stage- and cell type-specific manner. Mutational analyses for one of these transcripts, dlg-1/discs large, revealed that it relied on a translation-dependent process and did not require its 5' or 3' UTRs. We suggest a model in which dlg-1 transcripts are co-translationally localized with the nascent protein: first the translating complex goes to the cell membrane using sequences located at the C-terminal/3' end, and then apically using N-terminal/5' sequences. These studies identify a translation-based process for mRNA localization within developing epithelia and determine the necessary cis-acting sequences for dlg-1 mRNA targeting

    Dynein Modifiers in C. elegans: Light Chains Suppress Conditional Heavy Chain Mutants

    Get PDF
    Cytoplasmic dynein is a microtubule-dependent motor protein that functions in mitotic cells during centrosome separation, metaphase chromosome congression, anaphase spindle elongation, and chromosome segregation. Dynein is also utilized during interphase for vesicle transport and organelle positioning. While numerous cellular processes require cytoplasmic dynein, the mechanisms that target and regulate this microtubule motor remain largely unknown. By screening a conditional Caenorhabditis elegans cytoplasmic dynein heavy chain mutant at a semipermissive temperature with a genome-wide RNA interference library to reduce gene functions, we have isolated and characterized twenty dynein-specific suppressor genes. When reduced in function, these genes suppress dynein mutants but not other conditionally mutant loci, and twelve of the 20 specific suppressors do not exhibit sterile or lethal phenotypes when their function is reduced in wild-type worms. Many of the suppressor proteins, including two dynein light chains, localize to subcellular sites that overlap with those reported by others for the dynein heavy chain. Furthermore, knocking down any one of four putative dynein accessory chains suppresses the conditional heavy chain mutants, suggesting that some accessory chains negatively regulate heavy chain function. We also identified 29 additional genes that, when reduced in function, suppress conditional mutations not only in dynein but also in loci required for unrelated essential processes. In conclusion, we have identified twenty genes that in many cases are not essential themselves but are conserved and when reduced in function can suppress conditionally lethal C. elegans cytoplasmic dynein heavy chain mutants. We conclude that conserved but nonessential genes contribute to dynein function during the essential process of mitosis

    A Caenorhabditis elegans Wild Type Defies the Temperature–Size Rule Owing to a Single Nucleotide Polymorphism in tra-3

    Get PDF
    Ectotherms rely for their body heat on surrounding temperatures. A key question in biology is why most ectotherms mature at a larger size at lower temperatures, a phenomenon known as the temperature–size rule. Since temperature affects virtually all processes in a living organism, current theories to explain this phenomenon are diverse and complex and assert often from opposing assumptions. Although widely studied, the molecular genetic control of the temperature–size rule is unknown. We found that the Caenorhabditis elegans wild-type N2 complied with the temperature–size rule, whereas wild-type CB4856 defied it. Using a candidate gene approach based on an N2 × CB4856 recombinant inbred panel in combination with mutant analysis, complementation, and transgenic studies, we show that a single nucleotide polymorphism in tra-3 leads to mutation F96L in the encoded calpain-like protease. This mutation attenuates the ability of CB4856 to grow larger at low temperature. Homology modelling predicts that F96L reduces TRA-3 activity by destabilizing the DII-A domain. The data show that size adaptation of ectotherms to temperature changes may be less complex than previously thought because a subtle wild-type polymorphism modulates the temperature responsiveness of body size. These findings provide a novel step toward the molecular understanding of the temperature–size rule, which has puzzled biologists for decades
    corecore