6 research outputs found

    LRRK2 and RIPK2 variants in the NOD 2-mediated signaling pathway are associated with susceptibility to Mycobacterium leprae in Indian populations

    Get PDF
    In recent years, genome wide association studies have discovered a large number of gene loci that play a functional role in innate and adaptive immune pathways associated with leprosy susceptibility. The immunological control of intracellular bacteria M. leprae is modulated by NOD2-mediated signaling of Th1 responses. In this study, we investigated 211 clinically classified leprosy patients and 230 ethnically matched controls in Indian population by genotyping four variants in NOD2 (rs9302752A/G), LRRK2 (rs1873613A/G), RIPK2 (rs40457A/G and rs42490G/A). The LRRK2 locus is associated with leprosy outcome. The LRRK2 rs1873613A minor allele and respective rs1873613AA genotypes were significantly associated with an increased risk whereas the LRRK2 rs1873613G major allele and rs1873613GG genotypes confer protection in paucibacillary and leprosy patients. The reconstructed GA haplotypes from RIPK2 rs40457A/G and rs42490G/A variants was observed to contribute towards increased risk whereas haplotypes AA was observed to confer protective role. Our results indicate that a possible shared mechanisms underlying the development of these two clinical forms of the disease as hypothesized. Our findings confirm and validates the role of gene variants involved in NOD2-mediated signalling pathways that play a role in immunological control of intracellular bacteria M. leprae

    Molecular surveillance of antimicrobial resistance and transmission pattern of Mycobacterium leprae

    No full text
    ABSTRACTReports on antimicrobial resistance (AMR) of Mycobacterium leprae, relationship with bacteriological index (BI), and transmission in China are limited. We investigated the emergence of AMR mutations, the relationship between BI and AMR in complete, moderate and lack of BI decline cases, and molecular epidemiological features of AMR cases by enrolling 290 leprosy cases from four endemic provinces. Seven (2.41%), one (0.34%), five (1.72%), one (0.34%), and one (0.34%) strains had single mutations in folP1, rpoC, gyrA, gyrB, and 23S rRNA, respectively. Double mutations in folP1 and gyrA, rpoB and gyrA, and gyrA and 23S rRNA were observed in one (0.34%) strain each. Mutated strains occurred in three out of 81 (95% CI−0.005-0.079, p = 0.083) cases with complete BI decline, in seven out of 103 (95% CI 0.018-0.117, p = 0.008) cases with moderate BI decline, and in four out of 34 (95% CI 0.003-0.231, p = 0.044) cases with lack of BI decline. Most of these mutated strains were geographically separated and diverged genotypically. AMR mutations may not be the main cause of the lack of BI decline. The low transmission of AMR strains at the county level indicates an ongoing transmission at close contact levels
    corecore