215 research outputs found

    Procurement of IT Consulting Services and Firm-Specific Characteristics

    Get PDF
    Information technology investments and the management consulting industry witnessed unprecedented growth in the last decade. This led to regulators\u27 (SEC and Congress) allegations that consulting services that are provided by incumbent auditors may be disguised extra payments to auditors for favorable financial reporting. However, there may be alternative valid reasons for procurement of consulting. Under new legislation (proclaimed in the aftermath of spectacular failures like Enron and Worldcom), publicly traded corporations that engage professional services firms to provide both audit services and consulting services must now disclose the extent and nature of these services. Using the data made available by these new mandated disclosures and using the theoretical backdrop of the resource-based view (RBV), this paper examines whether investments by firms in consulting services follow predictable patterns driven by economic factors. Thus, rather than examine whether IT consulting has any ex-post value or whether procurement of consulting impairs auditor independence, this study focuses on whether investments, ex-ante, follow logical patterns consistent with microeconomic principles. Our analysis shows that procurement of IT and management consulting is consistent with the resource-based view -companies seek to develop organizational capabilities they lack as dictated by their strategic business need. In contrast to the narrow IT Doesn\u27t Matter view, it can be argued that even in the current environment of IT outsourcing, firms must carefully match their IT capability (in-house or outsourced) with organizational strategy and capability to develop unique and inimitable resources as put forth by RBV. We find that companies are indeed investing consistent with fundamental tenets of financial value analysis and based on market expectations of performance. More specifically, after controlling for pressure to perform and cash availability, low margin and low turnover companies spend more on consulting services. Low-margin strategy companies expend more on consulting when their asset turnover is also low, while low-turnover strategy companies expend more on consulting when their earnings margin is also low

    The congruence kernel of an arithmetic lattice in a rank one algebraic group over a local field

    Full text link
    Let k be a global field and let k_v be the completion of k with respect to v, a non-archimedean place of k. Let \mathbf{G} be a connected, simply-connected algebraic group over k, which is absolutely almost simple of k_v-rank 1. Let G=\mathbf{G}(k_v). Let \Gamma be an arithmetic lattice in G and let C=C(\Gamma) be its congruence kernel. Lubotzky has shown that C is infinite, confirming an earlier conjecture of Serre. Here we provide complete solution of the congruence subgroup problem for \Gamm$ by determining the structure of C. It is shown that C is a free profinite product, one of whose factors is \hat{F}_{\omega}, the free profinite group on countably many generators. The most surprising conclusion from our results is that the structure of C depends only on the characteristic of k. The structure of C is already known for a number of special cases. Perhaps the most important of these is the (non-uniform) example \Gamma=SL_2(\mathcal{O}(S)), where \mathcal{O}(S) is the ring of S-integers in k, with S=\{v\}, which plays a central role in the theory of Drinfeld modules. The proof makes use of a decomposition theorem of Lubotzky, arising from the action of \Gamma on the Bruhat-Tits tree associated with G.Comment: 27 pages, 5 figures, to appear in J. Reine Angew. Mat

    Quantitative proteomics reveals dynamic interaction of c-Jun N-terminal kinase (JNK) with RNA transport granule proteins splicing factor proline- and glutamine-rich (Sfpq) and non-POU domain-containing octamer-binding protein (Nono) during neuronal differentiation

    Get PDF
    The c-Jun N-terminal kinase (JNK) is an important mediator of physiological and pathophysiological processes in the central nervous system. Importantly, JNK is not only involved in neuronal cell death but also plays a significant role in neuronal differentiation and regeneration. For example, nerve growth factor (NGF) induces JNK-dependent neuronal differentiation in several model systems. The mechanism how JNK mediates neuronal differentiation is not well understood. Here, we employ a proteomic strategy to better characterize the function of JNK during neuronal differentiation. We use SILAC-based quantitative proteomics to identify proteins that interact with JNK in PC12 cells in an NGF-dependent manner. Intriguingly, we find that JNK interacts with neuronal transport granule proteins such as Sfpq and Nono upon NGF treatment. We validate the specificity of these interactions by showing that they are disrupted by a specific peptide inhibitor that blocks the interaction of JNK with its substrates. Immunoprecipitation and western blotting experiments confirm the interaction of JNK1 with Sfpq/Nono and demonstrate that it is RNA dependent. Confocal microscopy and subcellular fractionation indicates that JNK1 associates with neuronal granule proteins in the cytosol of PC12 cells, primary cortical neurons and P19-neuronal cells. Finally, siRNA experiments confirm that Sfpq is necessary for neuronal outgrowth in PC12 cells and that it is most likely acting in the same pathway as JNK. In summary, our data indicate that the interaction of JNK1 with transport granule proteins in the cytosol of differentiating neurons plays an important role during neuronal development

    Carbon Partitioning in Green Algae (Chlorophyta) and the Enolase Enzyme

    Full text link
    The exact mechanisms underlying the distribution of fixed carbon within photoautotrophic cells, also referred to as carbon partitioning, and the subcellular localization of many enzymes involved in carbon metabolism are still unknown. In contrast to the majority of investigated green algae, higher plants have multiple isoforms of the glycolytic enolase enzyme, which are differentially regulated in higher plants. Here we report on the number of gene copies coding for the enolase in several genomes of species spanning the major classes of green algae. Our genomic analysis of several green algae revealed the presence of only one gene coding for a glycolytic enolase [EC 4.2.1.11]. Our predicted cytosolic localization would require export of organic carbon from the plastid to provide substrate for the enolase and subsequent re-import of organic carbon back into the plastids. Further, our comparative sequence study of the enolase and its 3D-structure prediction may suggest that the N-terminal extension found in green algal enolases could be involved in regulation of the enolase activity. In summary, we propose that the enolase represents one of the crucial regulatory bottlenecks in carbon partitioning in green algae
    • ā€¦
    corecore