4 research outputs found

    Plant bioactive molecules bearing glycosides as lead compounds for the treatment of fungal infection: A review

    Get PDF
    Despite therapeutic advancement in the treatment of fungal infections, morbidity and mortality caused by these infections are still very high. There are approximately 300 fungal species that are infectious and can cause a variety of diseases. At present, several synthetic antifungal drugs are in clinical practice, many of them, however, are vulnerable to multidrug-resistant strains of microbes, and thus compromising the overall treatment outcomes. Glycosides are naturally occurring plant secondary metabolites with important therapeutic potential and clinical utility. The aim of this review was to focus on the antifungal effects of glycosides in preclinical studies with possible mechanism(s) wherein described. Published research show significant susceptibility of different fungi towards phytoglycosides, mediated through multiple mechanisms. Further detailed studies are needed to explain the clinical applications and limitations of these glycosides

    Potent in Vitro α-Glucosidase Inhibition of Secondary Metabolites Derived from <i>Dryopteris cycadina</i>

    Get PDF
    α-glucosidase is responsible for the hydrolysis of complex carbohydrates into simple absorbable glucose and causes postprandial hyperglycemia. α-glucosidase inhibition is thus the ideal target to prevent postprandial hyperglycemia. The present study was therefore designed to analyze the effects of various compounds isolated from Dryopteris cycadina against α-glucosidase including β-Sitosterol 1, β-Sitosterol3-O-β-d-glucopyranoside 2, 3, 5, 7-trihydroxy-2-(p-tolyl) chorman-4-one 3, Quercetin-3-0-β-d-glucopyranoside (3/→0-3///)- β-d- Quercetin -3-0- β –d-galactopyranoside 4 and 5, 7, 4/-Trihydroxyflavon-3-glucopyranoid 5. The in vitro spectrophotometric method was used for the analysis of test compounds against possible inhibition. Similarly, molecular docking studies were performed using the MOE software. These compounds showed concentration-dependent inhibition on α-glucosidase, and compounds 1 (IC50: 143 ± 0.47 µM), 3 (IC50:133 ± 6.90 µM) and 5 (IC50: 146 ± 1.93 µM) were more potent than the standard drug, acarbose (IC50: 290 ± 0.54 µM). Computational studies of these compounds strongly supported the in vitro studies and showed strong binding receptor sensitivity. In short, the secondary metabolites isolated from D. cycadina demonstrated potent α-glucosidase inhibition that were supported by molecular docking with a high docking score
    corecore