33 research outputs found
Similarities and differences in the protein composition of cutaneous melanoma cells and their exosomes identified by mass spectrometry
Intercellular transport of proteins mediated by extracellular vesicles (EVs)—exosomes and ectosomes—is one of the factors facilitating carcinogenesis. Therefore, the research on protein cargo of melanoma-derived EVs may provide a better understanding of the mechanisms involved in melanoma progression and contribute to the development of alternative biomarkers. Proteomic data on melanoma-derived EVs are very limited. The shotgun nanoLC-MS/MS approach was applied to analyze the protein composition of primary (WM115, WM793) and metastatic (WM266-4, WM1205Lu) cutaneous melanoma cells and exosomes released by them. All cells secreted homogeneous populations of exosomes that shared a characteristic set of proteins. In total, 3514 and 1234 unique proteins were identified in melanoma cells and exosomes, respectively. Gene ontology analysis showed enrichment in several cancer-related categories, including cell proliferation, migration, negative regulation of apoptosis, and angiogenesis. The obtained results broaden our knowledge on the role of selected proteins in exosome biology, as well as their functional role in the development and progression of cutaneous melanoma. The results may also inspire future studies on the clinical potential of exosomes
Stress and its molecular consequences in cancer progression
Stress, caused by psychological, physiological and physical factors has an adverse impact on human body homeostasis. There are two kind of stress: short-term and chronic. Cancer patients usually live under chronic stress, caused by diagnosis-related strong emotional experience and depression, resulting from various difficulties associated with disease progression and treatment. At the molecular level, stress factors induce production and secretion of stress-related hormones, such as catecholamines, glucocorticoids and dopamine (as a part of adaptational body response), which influence both normal and transformed cells through their specific receptors. The particular effects exerted by these molecules on cancer cells have been also observed in in vitro cultures and include changes in proliferation, apoptosis susceptibility and migration/invasion potential. As a result, it has been suggested that stress hormones may be responsible for progression of malignancy and thus accelerate the metastasis formation in cancer patients. However, the clinical data on correlation between stress and the patients survival, as well as the molecular analysis of stress hormone receptors expression and action in cancer cell, have not yet provided an unequivocal answer. For this reason, extensive studies, on molecular and clinical level are needed to fully determine stress impact on cancerprogression and on the effectiveness of anti-cancer treatment. Nowadays, it seems reasonable that the personalization of anti-cancer therapy should also focus on mental state of cancer patients, and provide them with psychological tools or techniques for stress management
Low-vacuum filtration as an alternative extracellular vesicle concentration method : a comparison with ultracentrifugation and differential centrifugation
Recent years have brought great focus on the development of drug delivery systems based on extracellular vesicles (EVs). Considering the possible applications of EVs as drug carriers, the isolation process is a crucial step. To solve the problems involved in EV isolation, we developed and validated a new EV isolation method—low-vacuum filtration (LVF)—and compared it with two commonly applied procedures—differential centrifugation (DC) and ultracentrifugation (UC). EVs isolated from endothelial cell culture media were characterized by (a) Transmission Electron Microscopy (TEM), (b) Nanoparticle Tracking Analysis (NTA), (c) Western blot and (d) Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy (ATR-FTIR). Additionally, the membrane surface was imaged with Environmental Scanning Electron Microscopy (ESEM). We found that LVF was a reproducible and efficient method for EV isolation from conditioned media. Additionally, we observed a correlation between ATR-FTIR spectra quality and EV and protein concentration. ESEM imaging confirmed that the actual pore diameter was close to the values calculated theoretically. LVF is an easy, fast and inexpensive EV isolation method that allows for the isolation of both ectosomes and exosomes from high-volume sources with good repeatability. We believe that it could be an efficient alternative to commonly applied methods
Preoperative neutrophil-lymphocyte and lymphocyte-monocyte ratios reflect immune cell population rearrangement in resectable pancreatic cancer
BACKGROUND: Neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), and lymphocyte-monocyte ratio (LMR) may serve as a simple index of the immune function. The aim of this study was to investigate the prognostic significance of NLR, PLR, and LMR in patients with resectable pancreatic ductal adenocarcinoma (PDAC) and to verify whether such biomarkers are associated with changes in populations of lymphoid cells. METHODS: The prognostic implications of blood count parameters were evaluated in a retrospective cohort of 442 subjects undergoing pancreatic resections for PDAC. Subpopulations of lymphocytes and monocytes in peripheral blood were identified by FACS in a prospective cohort of 54 patients. RESULTS: In the univariate analysis, NLR < 5 and LMR ≥ 3 were associated with significantly longer median survival of 25.7 vs 12.6 months and 29.2 vs 13.1 months, respectively. PLR did not influence survival. The Cox proportional hazards model showed that high NLR (HR 1.66, 95 % CI 1.12 to 2.46, P = 0.012) and low LMR (HR 1.65, 95 % CI 1.06 to 2.58, P = 0.026) were independent predictors of poor prognosis. NLR ≥ 5 and LMR < 3 correlated with an approximately twofold decrease in counts of helper and cytotoxic T cells, B cells, and NK cells. High NLR was also accompanied with increased neutrophil counts, while low LMR showed increased numbers of monocytes, mostly classical. CONCLUSIONS: NLR and LMR may carry important prognostic information for patients with resected PDAC. The unfavorable prognosis likely correlates with reduced numbers of immune cells effective against the tumor and increased populations of cells involved in immune suppression
Large extracellular vesicles do not mitigate the harmful effect of hyperglycemia on endothelial cell mobility
Extracellular vesicles, especially the larger fraction (LEVs – large extracellular vesicles), are believed to be an important means of intercellular communication. Earlier studies on LEVs have shown their healing properties, especially in the vascular cells of diabetic patients. Uptake of LEVs by endothelial cells and internalization of their cargo have also been demonstrated. Endothelial cells change their properties under hyperglycemic conditions (HGC), which reduces their activity and is the cause of endothelial dysfunction. The aim of our study was to investigate how human umbilical vein endothelial cells (HUVECs) change their biological properties: shape, mobility, cell surface stiffness, as well as describe the activation of metabolic pathways after exposure to the harmful effects of HGC and the administration of LEVs released by endothelial cells. We obtained LEVs from HUVEC cultures in HGC and normoglycemia (NGC) using the filtration and ultracentrifugation methods. We assessed the size of LEVs and the presence of biomarkers such as phosphatidylserine, CD63, beta-actin and HSP70. We analyzed the LEVs uptake efficiency by HUVECs, HUVEC shape, actin cytoskeleton remodeling, surface stiffness and finally gene expression by mRNA analysis. Under HGC conditions, HUVECs were larger and had a stiffened surface and a strengthened actin cortex compared to cells under NGC condition. HGC also altered the activation of metabolic pathways, especially those related to intracellular transport, metabolism, and organization of cellular components. The most interesting observation in our study is that LEVs did not restore cell motility disturbed by HGC. Although, LEVs were not able to reverse this deleterious effect of HGC, they activated transcription of genes involved in protein synthesis and vesicle trafficking in HUVECs