8 research outputs found

    The lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) receptor gene families: cloning and comparative expression analysis in Xenopus laevis

    No full text
    Sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) are endogenous bioactive lipids which mediate a variety of biological cell responses such as cell proliferation, migration, differentiation and apoptosis. Their actions are mediated by binding to the G-protein-coupled endothelial differentiation gene (Edg) receptor subfamily, referred to as S1P1-5 and LPA1-5, and regulate a variety of signalling pathways involved in numerous physiological processes and pathological conditions. Their importance during embryogenesis has been demonstrated by the generation of knock-out mice and specific roles have been assigned to these receptors. However, potential functional redundancy and the lethality of some mutants have complicated functional analysis in these models. Here we report the cloning of the S1P and LPA receptors in Xenopus laevis and tropicalis. Phylogenetic analyses demonstrate the high level of conservation of these receptors between amphibian and other vertebrate species. We have conducted a comparative expression analysis of these receptors during development and in the adult frog, by both RT-PCR and whole mount in situ hybridisation. In particular, we show that S1P1, 2 and 5 display distinct embryonic specific expression patterns, suggesting potentially different developmental roles for these receptors, and therefore for their ligands, during amphibian embryogenesis

    Ectophosphodiesterase/nucleotide phosphohydrolase (Enpp) nucleotidases: cloning, conservation and developmental restriction

    No full text
    Ectonucleotidase proteins occupy a central role in purine signalling regulation by sequentially hydrolysing ATP to ADP and to adenosine. The ENPP (or PDNP) gene family, which encodes ectophosphodiesterase/nucleotide phosphohydrolases, is a subfamily of these enzymes, which consists of 7 members in mammals. These proteins catalyse the generation of bioactive lipids, placing the ENPP enzymes as key regulators of major physiological signalling pathways and also important players in several pathological conditions. Here we report the cloning of all the members, except enpp5, of the enpp family in Xenopus laevis and tropicalis. Phylogenetic analyses demonstrate the high level of conservation of these proteins between amphibian and other vertebrate species. During development and in the adult frog, each gene displays a distinct specific expression pattern, suggesting potentially different functions for these proteins during amphibian embryogenesis. This is the first complete developmental analysis of gene expression of this gene family in vertebrates

    The lmx1b gene is pivotal in glomus development in Xenopus laevis

    Get PDF
    We have previously shown that lmx1b, a LIM homeodomain protein, is expressed in the pronephric glomus. We now show temporal and spatial expression patterns of lmx1b and its potential binding partners in both dissected pronephric anlagen and in individual dissected components of stage 42 pronephroi. Morpholino oligonucleotide knock-down of lmx1b establishes a role for lmx1b in the development of the pronephric components. Depletion of lmxlb results in the formation of a glomus with reduced size. Pronephric tubules were also shown to be reduced in structure and/or coiling whereas more distal tubule structure was unaffected. Over-expression of lmx1b mRNA resulted in no significant phenotype. Given that lmx1b protein is known to function as a heterodimer, we have over-expressed lmx1b mRNA alone or in combination with potential interacting molecules and analysed the effects on kidney structures. Phenotypes observed by overexpression of lim1 and ldb1 are partially rescued by co-injection with lmxlb mRNA. Animal cap experiments confirm that co-injection of lmx1b with potential binding partners can up-regulate pronephric molecular markets suggesting that lmx1b lies upstream of wt1 in the gene network controlling glomus differentiation. This places lmx1b in a genetic hierarchy involved in pronephros development and suggests that it is the balance in levels of binding partners together with restricted expression domains of lmx1b and lim1 which influences differentiation into glomus or tubule derivatives in vivo. (c) 2008 Elsevier Inc. All rights reserved

    Comparative genomic and expression analysis of the conserved NTPDase gene family in Xenopus

    No full text
    The purines, ATP and adenosine, are important signaling molecules in the nervous system. ATP is sequentially degraded to adenosine by the ectonucleotidase proteins. The NTPDase (or CD39) family is a subfamily of these enzymes, which consists of nine members in mammals. In Xenopus embryos, we have shown that ATP, and its antagonist adenosine, regulate the rundown of swimming and we therefore proposed that ectonucleotidase proteins are key regulators of locomotor activity. Here, we report the cloning of all nine members of the NTPDase family in Xenopus laevis and Xenopus tropicalis. Our phylogenetic analysis shows that this family is highly conserved between the frog species and also during vertebrate evolution. In the adult frog, NTPDase genes are broadly expressed. During development, all NTPDase genes, except for NTPDase8, are expressed and display a distinct specific expression pattern, suggesting potentially different functions of these proteins during embryogenesis of X laevis. (c) 2005 Elsevier Inc. All rights reserved

    Purine-mediated signalling triggers eye development

    No full text
    A conserved network of eye field transcription factors (EFTFs) underlies the development of the eye in vertebrates and invertebrates(1). To direct eye development, Pax6, a key gene in this network(2,3), interacts with genes encoding other EFTFs such as Rx1 and Six3 (refs 4-6). However, the mechanisms that control expression of the EFTFs remain unclear(7). Here we show that purine-mediated signalling triggers both EFTF expression and eye development in Xenopus laevis. Overexpression of ectonucleoside triphosphate diphosphohydrolase 2 (E-NTPDase2)(8), an ectoenzyme that converts ATP to ADP(9), caused ectopic eye-like structures, with occasional complete duplication of the eye, and increased expression of Pax6, Rx1 and Six3. In contrast, down-regulation of endogenous E-NTPDase2 decreased Rx1 and Pax6 expression. E-NTPDase2 therefore acts upstream of these EFTFs. To test whether ADP (the product of E-NTPDase2) might act to trigger eye development through P2Y1 receptors, selective in Xenopus for ADP(10,11), we simultaneously knocked down expression of the genes encoding E-NTPDase2 and the P2Y1 receptor. This could prevent the expression of Rx1 and Pax6 and eye formation completely. We next measured ATP release(12-14) in the presumptive eye field, demonstrating a transient release of ATP at a time that could plausibly trigger (once converted to ADP) expression of the EFTFs. This surprising role for transient purine-mediated signalling in eye development may be widely conserved, because alterations to the locus of E-NTPDase2 on human chromosome 9 cause severe head and eye defects, including microphthalmia(15-18). Our results suggest a new mechanism for the initiation of eye development
    corecore