3 research outputs found

    Spatial distribution and sequential sampling of aphid and their natural enemies on wheat

    Get PDF
    246-253Although many pests attack wheat, the damage due to wheat aphids has been on rise due to climate change phenomenon. Population of aphids increases during February to March and so the ladybird beetles to devour on aphids. With the aim of facilitating conservation of ladybird beetles, predator conditioned sampling plans were worked out. Wheat aphids, Rhopalosiphum padi L. and Sitobion avenae F. were observed infesting wheat. Major predatory coccinellid beetles, Cheilomenes sexmaculata (Fabricius) and Coccinella septempunctata (Linnaeus) were also found feeding on the wheat aphids. Spatial distribution of mixed population of the aphids and coccinellid beetles was analyzed using variance-mean ratio and regression models such as Taylor’s power law and Iwao’s mean crowding regression. The aphids and its predatory beetles were counted at different crop age. The mean population for wheat aphid was 7.88/plant and 0.72/ plant at 75 and 106 days after sowing (DAS), respectively. Variance-mean ratio indicated regular to aggregated distribution of aphids on the crop. Taylor’s power law aggregation parameter (b = 2.62) and density contagiousness co-efficient (β = 1.20) of Iwao’s mean crowding regression also revealed aggregated distribution of the wheat aphids. The mean population of coccinellid beetles varied from 0.72 to 1.43/plant during 68 to 100 DAS. Taylor’s power law aggregation parameter (b = 3.64) and density contagiousness co-efficient (β = 2.09) of Iwao’s mean crowding regression revealed aggregated distribution of the predators on the wheat crop. Sequential sampling plans were developed for wheat aphid management with and without predator’s effect through Taylor’s power law and Iwao’s mean crowding regression. Inclusion of predator effect in the regression models increased aphid population levels which necessitates need for management measures at higher population levels. Thus, the sequential sampling plans with predator effect are useful in avoiding unnecessary pesticide application on wheat crop for the aphid management

    A CRISPR way for accelerating cereal crop improvement: Progress and challenges

    Get PDF
    Humans rely heavily on cereal grains as a key source of nutrients, hence regular improvement of cereal crops is essential for ensuring food security. The current food crisis at the global level is due to the rising population and harsh climatic conditions which prompts scientists to develop smart resilient cereal crops to attain food security. Cereal crop improvement in the past generally depended on imprecise methods like random mutagenesis and conventional genetic recombination which results in high off targeting risks. In this context, we have witnessed the application of targeted mutagenesis using versatile CRISPR-Cas systems for cereal crop improvement in sustainable agriculture. Accelerated crop improvement using molecular breeding methods based on CRISPR-Cas genome editing (GE) is an unprecedented tool for plant biotechnology and agriculture. The last decade has shown the fidelity, accuracy, low levels of off-target effects, and the high efficacy of CRISPR technology to induce targeted mutagenesis for the improvement of cereal crops such as wheat, rice, maize, barley, and millets. Since the genomic databases of these cereal crops are available, several modifications using GE technologies have been performed to attain desirable results. This review provides a brief overview of GE technologies and includes an elaborate account of the mechanisms and applications of CRISPR-Cas editing systems to induce targeted mutagenesis in cereal crops for improving the desired traits. Further, we describe recent developments in CRISPR-Cas–based targeted mutagenesis through base editing and prime editing to develop resilient cereal crop plants, possibly providing new dimensions in the field of cereal crop genome editing

    Unraveling Microbial Volatile Elicitors Using a Transparent Methodology for Induction of Systemic Resistance and Regulation of Antioxidant Genes at Expression Levels in Chili against Bacterial Wilt Disease

    No full text
    Microbial volatiles benefit the agricultural ecological system by promoting plant growth and systemic resistance against diseases without harming the environment. To explore the plant growth-promoting efficiency of VOCs produced by Pseudomonas fluorescens PDS1 and Bacillus subtilis KA9 in terms of chili plant growth and its biocontrol efficiency against Ralstonia solanacearum, experiments were conducted both in vitro and in vivo. A closure assembly was designed using a half-inverted plastic bottle to demonstrate plant–microbial interactions via volatile compounds. The most common volatile organic compounds were identified and reported; they promoted plant development and induced systemic resistance (ISR) against wilt pathogen R. solanacearum. The PDS1 and KA9 VOCs significantly increased defensive enzyme activity and overexpressed the antioxidant genes PAL, POD, SOD, WRKYa, PAL1, DEF-1, CAT-2, WRKY40, HSFC1, LOX2, and NPR1 related to plant defense. The overall gene expression was greater in root tissue as compared to leaf tissue in chili plant. Our findings shed light on the relationship among rhizobacteria, pathogen, and host plants, resulting in plant growth promotion, disease suppression, systemic resistance-inducing potential, and antioxidant response with related gene expression in the leaf and root tissue of chili
    corecore