237 research outputs found

    Negative Dielectrophoretic Capture of Bacterial Spores in Food Matrices

    Get PDF
    A microfluidic device with planar square electrodes is developed for capturing particles from high conductivity media using negative dielectrophoresis (n-DEP). Specifically, Bacillus subtilis and Clostridium sporogenes spores, and polystyrene particles are tested in NaCl solution (0.05 and 0.225 S/m), apple juice (0.225 S/m), and milk (0.525 S/m). Depending on the conductivity of the medium, the Joule heating produces electrothermal flow (ETF), which continuously circulates and transports the particles to the DEP capture sites. Combination of the ETF and n-DEP results in different particle capture efficiencies as a function of the conductivity. Utilizing 20 μm height DEP chambers, “almost complete” and rapid particle capture from lower conductivity (0.05 S/m) medium is observed. Using DEP chambers above 150 μm in height, the onset of a global fluid motion for high conductivity media is observed. This motion enhances particle capture on the electrodes at the center of the DEP chamber. The n-DEP electrodes are designed to have well defined electric field minima, enabling sample concentration at 1000 distinct locations within the chip. The electrode design also facilitates integration of immunoassay and other surface sensors onto the particle capture sites for rapid detection of target micro-organisms in the future. © 2010 American Institute of Physics

    Escherichia coli Cells Exposed to Lethal Doses of Electron Beam Irradiation Retain Their Ability to Propagate Bacteriophages and Are Metabolically Active

    Get PDF
    Reports in the literature suggest that bacteria exposed to lethal doses of ionizing radiation, i.e., electron beams, are unable to replicate yet they remain metabolically active. To investigate this phenomenon further, we electron beam irradiated Escherichia coli cells to a lethal dose and measured their membrane integrity, metabolic activity, ATP levels and overall cellular functionality via bacteriophage infection. We also visualized the DNA double-strand breaks in the cells. We used non-irradiated (live) and heat-killed cells as positive and negative controls, respectively. Our results show that the membrane integrity of E. coli cells is maintained and that the cells remain metabolically active up to 9 days post-irradiation when stored at 4°C. The ATP levels in lethally irradiated cells are similar to non-irradiated control cells. We also visualized extensive DNA damage within the cells and confirmed their cellular functionality based on their ability to propagate bacteriophages for up to 9 days post-irradiation. Overall, our findings indicate that lethally irradiated E. coli cells resemble live non-irradiated cells more closely than heat-killed (dead) cells

    A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern

    Get PDF
    Researchintothedevelopmentofsolarandvisiblelightactivephotocatalystshasbeensignificantlyincreased\ud inrecentyearsduetoitswiderangeofapplicationsintreatingcontaminantsofemergingconcern(CECs),\ud endocrine disruptingcompounds(EDCs), bacteriaandcyanotoxins.Solarphotocatalysisisfoundtobehighly\ud effectiveintreatingawiderangeofCECsfromsourcessuchaspharmaceuticals,steroids,antibiotics,phthalates,\ud disinfectants,pesticides,fragrances(musk),preservativesandadditives.Similarly,anumberofEDCsincluding\ud polycyclicaromatichydrocarbons(PAHs),alkylphenols(APs),bisphenolA(BPA),organotins(OTs),volatileor-\ud ganic compounds(VOCs),naturalandsyntheticestrogenicandandrogenicchemicals,pesticides,andheavy\ud metalscanberemovedfromcontaminatedwaterbyusingsolarphotocatalysis.Photocatalysiswasalsofound\ud effectiveintreatingawiderangeofbacteriasuchas Staphylococcusaureus,Bacillussubtilis,Escherichiacoli,\ud Salmonellatyphi and Micrococcuslylae. Thecurrentreviewalsocomparestheeffectivenessofvariousvisible\ud lightactivatedTiO2 photocatalystsfortreatingthesepollutants. Dopingorco-dopingofTiO2 usingnitrogen,\ud nitrogen–silver,sulphur,carbon,copperandalsoincorporation ofgraphenenano-sheetsarediscussed.Theuse\ud of immobilisedTiO2 for improvingthephotocatalyticactivityisalso presented.Decoratingtitaniaphotocatalyst\ud withgrapheneoxide(GO)isofparticularinterestduetoGO'sabilitytoincreasethephotocatalyticactivityof\ud TiO2. TheuseGOtoincreasethephotocatalyticactivityofTiO2 againstmicrocystin-LR(MC-LR)underUV-Aand\ud solarirciationisdiscussed.TheenhancedphotocatalyticactivityofGO–TiO2 comparedtothecontrolmaterialis\ud attributedtotheeffectiveinhibitionoftheelectron–holerecombinationbycontrollingtheinterfacialcharge\ud transferprocess.Itisconcludedthatthereisacriticalneedforfurtherimprovementoftheefficiencyofthese\ud materialsiftheyaretobeconsideredforbulkindustrialuse

    A Comparative Analysis of the Metabolomic Response of Electron Beam Inactivated E. coli O26:H11 and Salmonella Typhimurium ATCC 13311

    Get PDF
    Ionizing radiation such as Electron beam (EB) and gamma irradiation inactivate microbial cells preventing their multiplication. These cells, however, are structurally intact and appear to have residual metabolic activity. We were interested in understanding the metabolic pathways that were still functional in EB-inactivated cells. Therefore, the primary objective of this study was to compare the metabolites accumulating in EB-inactivated pathogens E. coli 026:H11 and S. Typhimurium immediately after EB inactivation and 24 h post inactivation. Defined aliquots (109 CFU/mL) of E. coli O26-H11 (TW 1597) and S. Typhimurium (ATCC 13311) suspended in phosphate-buffered saline were exposed to lethal EB doses of 3 kGy and 2 kGy, respectively. Complete inactivation (inability of cells to multiply) was confirmed by traditional plating methods. An untargeted analysis of the primary metabolites accumulating in un-irradiated (control) cells, EB-inactivated cells immediately after irradiation, and EB-inactivated cells that were incubated at room temperature for 24 h post EB inactivation was performed using gas chromatography/mass spectrometry. A total of 349 different metabolites were detected in the EB-inactivated S. Typhimurium and E. coli O26:H11 cells, out of which, only 50% were identifiable. In S. Typhimurium, 98 metabolites were expressed at statistically different concentrations (P < 0.05) between the three treatment groups. In E. coli O26:H11, 63 metabolites were expressed at statistically different concentrations (P < 0.05) between the three treatment groups. In both these pathogens, the β-alanine, alanine, aspartate, and glutamate metabolic pathways were significantly impacted (P < 0.01). Furthermore, the metabolomic changes in EB-inactivated cells were amplified significantly after 24 h storage at room temperature in phosphate-buffered saline. These results suggest that EB-inactivated cells are very metabolically active and, therefore, the term Metabolically Active yet Non-culturable is an apt term describing EB-inactivated bacterial cells

    Future Directions in Food Safety*

    Get PDF
    Abstract The recent success that the USDA Food Safety Inspection Service has had in 2003 and 2004 of reversing the steadily increasing trend in Class 1 recalls is welcomed. In agreement with those statistics are the FSIS microbiological results for Escherichia coli O157:H7 in raw ground beef, which also showed a decrease in 2003. But there is much work to be done in food safety and much more to achieve. It is imperative that while addressing food-safety issues, we should understand the role that the environmental microbiology, public health epidemiology, aerobiology, molecular microbial ecology, occupational health, industrial processes, municipal water quality, and animal health have on food safety. Although it is a difficult task, a concerted effort by industry, academic, and governmental researchers can accomplish the goal. Here we discuss the future directions and applications in the distribution and spread of foodborne hazards, methods for microbial detection and differentiation, intervention strategies for farm pathogen reduction, targeting waste at animal production sites, considerations on antimicrobial resistance, food-safety storage and preparation strategies, food irradiation, new and emerging food-safety hazards, and quantitative microbial food-safety risk assessment. Although this does not comprise an exhaustive list of food-safety issues, these are the areas that, we think, require considerable attention by researchers. Not only we need to strive to improve food safety through new strategies, processes, and applications, but we also need to be flexible and observant to readily handle the new and emerging food-safety problems, whether they are within our borders or global. At present, the United States has one of the safest food-safety systems in place. However, although this is not a time for complacency, our research endeavors should be designed to keep pace with the food-safety needs of the future

    REMOVAL AND FATE OF SPECIFIC MICROBIAL PATHOGENS WITHIN ON-SITE WASTEWATER TREATMENT SYSTEMS

    Get PDF
    Untreated or improperly treated wastewater has often been cited as the primary contamination source of groundwater. Decentralized wastewater treatment systems have applicability around the world since it obviates the need for extensive infrastructure development and expenditures. The use of a sand filter, a submerged flow constructed wetland and an aerobic treatment unit to remove bacterial and viral pathogens from wastewater streams was evaluated in this study. Salmonella sp. and a bacteriophages tracer were used in conjunction with the conservative bromide tracer to understand the fate and transport of these organisms in these treatment systems. Viral transport patterns in the sand filter and constructed wetland had a correlation of 0.8 (P< 0.05). In the constructed wetland, the virus exhibited almost a 3-log reduction, while in the sand-filter, the viruses exhibited a 2-log reduction. The bacterial tracers, however, did not exhibit similar reductions. Low numbers of bacteria and viruses were still detectable in the effluent streams suggesting that disinfection of the effluent is critical. The survival of the tracer bacteria and viruses were as expected dependant on the biotic and abiotic conditions existing within the wastewater. The results suggest that the microbial removal characteristics of decentralized wastewater treatment systems can vary and depend on factors such as adsorption, desorption and inactivation which in turn depend on the design specifics such as filter media characteristics and local climatic conditions

    New Insights into the Mechanism of Visible Light Photocatalysis

    Get PDF
    ABSTRACT: In recent years, the area of developing visible-lightactive photocatalysts based on titanium dioxide has been enormously investigated due to its wide range of applications in energy and environment related fields. Various strategies have been designed to efficiently utilize the solar radiation and to enhance the efficiency of photocatalytic processes. Building on the fundamental strategies to improve the visible light activity of TiO2-based photocatalysts, this Perspective aims to give an insight into many contemporary developments in the field of visible-light-active photocatalysis. Various examples of advanced TiO2 composites have been discussed in relation to their visible light induced photoconversion efficiency, dynamics of electron− hole separation, and decomposition of organic and inorganic pollutants, which suggest the critical need for further development of these types of materials for energy conversion and environmental remediation purposes

    Photocatalytic air-purification: A low-cost, real-time gas detection method

    Get PDF
    This research demonstrates the use of a gas detector as a feasible alternative to the standardized analytical methods typically found in photocatalytic air-purification ISO standard tests and academic literature. A methyl mercaptan detector is calibrated and validated (for linearity) using a standard gas generator. The detector can be directly connected to the photoreactor exit allowing real-time span gas measurement with data-logging at one minute intervals. The detector successfully differentiated samples with different photocatalytic performance. The use of such detectors offers an easy-to-use, low-cost alternative to gas measurement with applications in academic research, proof-of-concept photocatalytic tests and also as an educational tool

    Isolimonic acid interferes with Escherichia coli O157:H7 biofilm and TTSS in QseBC and QseA dependent fashion

    Get PDF
    BACKGROUND: E. coli O157:H7 (EHEC) is an important human pathogen. The antibiotic treatment of EHEC reportedly results in release of Shiga toxin and is therefore discouraged. Consequently, alternative preventive or therapeutic strategies for EHEC are required. The objective of the current study was to investigate the effect of citrus limonoids on cell-cell signaling, biofilm formation and type III secretion system in EHEC. RESULTS: Isolimonic acid and ichangin were the most potent inhibitors of EHEC biofilm (IC(25)=19.7 and 28.3 μM, respectively) and adhesion to Caco-2 cells. The qPCR analysis revealed that isolimonic acid and ichangin repressed LEE encoded genes by ≈3 to 12 fold. In addition, flhDC was repressed by the two limonoids (≈3 to 7 fold). Further studies suggested that isolimonic acid interferes with AI-3/epinephrine activated cell-cell signaling pathway. Loss of biofilm inhibitory activity of isolimonic acid in ΔqseBC mutant, which could be restored upon complementation, suggested a dependence on functional QseBC. Additionally, overexpression of qseBC in wild type EHEC abated the inhibitory effect of isolimonic acid. Furthermore, the isolimonic acid failed to differentially regulate ler in ΔqseA mutant, while plasmid borne expression of qseA in ΔqseA background restored the repressive effect of isolimonic acid. CONCLUSIONS: Altogether, results of study seem to suggest that isolimonic acid and ichangin are potent inhibitors of EHEC biofilm and TTSS. Furthermore, isolimonic acid appears to interfere with AI-3/epinephrine pathway in QseBC and QseA dependent fashion
    corecore