34 research outputs found

    Redundancy resolution in tasks with parametrizable uncertainty

    Get PDF
    Redundant robots motion planning and control in uncertain task is addressed by model-based approach. Instead of control and adapt the environment to the robot or apply a complex visual servoing system, we have modeled the redundancy resolution (RR) on the parameter spaces that quantify uncertainties of the task. A modeling tool was Successive Approximations (SA). It provides very advantageous properties: small computational effort and small model size, accurate output, extrapolation, and generalization across parameter set obtained by random addressing of the model. The task discussed is press loading with typical two-dimensional uncertainties in pick-up and unloading locations. The robot used is 4 DOF planar robot. The SA-based models of redundancy resolution in the 2D parameter spaces are highly efficient: for more that 30 times less computational efforts resulted in a zero end-point errors, regardless of the task uncertainty

    Design of a polishing tool for collaborative robotics using minimum viable product approach

    Full text link
    This is an Author's Accepted Manuscript of an article published in Carlos Perez-Vidal, Luis Gracia, Samuel Sanchez-Caballero, J. Ernesto Solanes, Alessandro Saccon & Josep Tornero (2019) Design of a polishing tool for collaborative robotics using minimum viable product approach, International Journal of Computer Integrated Manufacturing, 32:9, 848-857, DOI: 10.1080/0951192X.2019.1637026 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/0951192X.2019.1637026[EN] A collaborative tool for robotic polishing is developed in this work in order to allow the simultaneous operation of the robot system and human operator to cooperatively carry out the polishing task. For this purpose, the collaborative environment is detailed and the polishing application is designed. Moreover, the polishing tool is developed and its implementation using the minimum viable product approach is obtained. Furthermore, a robust hybrid position-force control is proposed to use the developed tool attached to a robot system and some experiments are given to show its performance.This work was supported in part by the Ministerio de Ciencia e Innovacion (Spanish Government) under project [DPI2017-87656-C2-1-R] and the Generalitat Valenciana under Grant [VALi+ d APOSTD/2016/044].Perez-Vidal, C.; Gracia Calandin, LI.; Sanchez-Caballero, S.; Solanes Galbis, JE.; Saccon, A.; Tornero Montserrat, J. (2019). Design of a polishing tool for collaborative robotics using minimum viable product approach. International Journal of Computer Integrated Manufacturing. 32(9):848-857. https://doi.org/10.1080/0951192X.2019.1637026S848857329Alders, K., M. Lehe, and G. Wan. 2001. “Method for the Automatic Recognition of Surface Defects in Body Shells and Device for Carrying Out Said Method” US Patent 6,320,654, Accessed 2001 November. https://www.google.ch/patents/US6320654Alexopoulos, K., Mavrikios, D., & Chryssolouris, G. (2013). ErgoToolkit: an ergonomic analysis tool in a virtual manufacturing environment. International Journal of Computer Integrated Manufacturing, 26(5), 440-452. doi:10.1080/0951192x.2012.731610Andres, J., Gracia, L., & Tornero, J. (2011). Calibration and control of a redundant robotic workcell for milling tasks. International Journal of Computer Integrated Manufacturing, 24(6), 561-573. doi:10.1080/0951192x.2011.566284Arnal, L., Solanes, J. E., Molina, J., & Tornero, J. (2017). Detecting dings and dents on specular car body surfaces based on optical flow. Journal of Manufacturing Systems, 45, 306-321. doi:10.1016/j.jmsy.2017.07.006Blank, S. 2010. “Perfection By Subtraction - The Minimum Feature Set”. Accessed 2018 August. http://steveblank.com/2010/03/04/perfection-by-subtraction-the-minimum-feature-set/Dimeas, F., & Aspragathos, N. (2016). Online Stability in Human-Robot Cooperation with Admittance Control. IEEE Transactions on Haptics, 9(2), 267-278. doi:10.1109/toh.2016.2518670Fitzgerald, C. “Developing Baxter, A new industrial robot with common sense for U.S. manufacturing.” 2013.Gracia, L., Sala, A., & Garelli, F. (2012). A supervisory loop approach to fulfill workspace constraints in redundant robots. Robotics and Autonomous Systems, 60(1), 1-15. doi:10.1016/j.robot.2011.07.008Gracia, L., Sala, A., & Garelli, F. (2014). Robot coordination using task-priority and sliding-mode techniques. Robotics and Computer-Integrated Manufacturing, 30(1), 74-89. doi:10.1016/j.rcim.2013.08.003Gracia, L., Solanes, J. E., Muñoz-Benavent, P., Valls Miro, J., Perez-Vidal, C., & Tornero, J. (2018). Adaptive Sliding Mode Control for Robotic Surface Treatment Using Force Feedback. Mechatronics, 52, 102-118. doi:10.1016/j.mechatronics.2018.04.008Julius, R., Schürenberg, M., Schumacher, F., & Fay, A. (2017). Transformation of GRAFCET to PLC code including hierarchical structures. Control Engineering Practice, 64, 173-194. doi:10.1016/j.conengprac.2017.03.012. E. K. (2016). TOWARDS AN AUTOMATED POLISHING SYSTEM - CAPTURING MANUAL POLISHING OPERATIONS. International Journal of Research in Engineering and Technology, 05(07), 182-192. doi:10.15623/ijret.2016.0507030Khan, A. M., Yun, D., Zuhaib, K. M., Iqbal, J., Yan, R.-J., Khan, F., & Han, C. (2017). Estimation of Desired Motion Intention and compliance control for upper limb assist exoskeleton. International Journal of Control, Automation and Systems, 15(2), 802-814. doi:10.1007/s12555-015-0151-7Kirschner, D., Velik, R., Yahyanejad, S., Brandstötter, M., & Hofbaur, M. (2016). YuMi, Come and Play with Me! A Collaborative Robot for Piecing Together a Tangram Puzzle. Interactive Collaborative Robotics, 243-251. doi:10.1007/978-3-319-43955-6_29Mohammad, A. E. K., Hong, J., & Wang, D. (2018). Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach. Robotics and Computer-Integrated Manufacturing, 49, 54-65. doi:10.1016/j.rcim.2017.05.011Nagata, F., Hase, T., Haga, Z., Omoto, M., & Watanabe, K. (2007). CAD/CAM-based position/force controller for a mold polishing robot. Mechatronics, 17(4-5), 207-216. doi:10.1016/j.mechatronics.2007.01.003Nakamura, Y., Hanafusa, H., & Yoshikawa, T. (1987). Task-Priority Based Redundancy Control of Robot Manipulators. The International Journal of Robotics Research, 6(2), 3-15. doi:10.1177/027836498700600201Ries, E. 2009. “What is the Minimum Viable Product”. March. Accessed 2018 August. http://venturehacks.com/articles/minimum-viable-productRobinson, F. 2001 “A Proven Methodology to Maximize Return on Risk”. Accessed 2018 August. http://www.syncdev.com/minimum-viable-productShepherd, S., & Buchstab, A. (2014). KUKA Robots On-Site. Robotic Fabrication in Architecture, Art and Design 2014, 373-380. doi:10.1007/978-3-319-04663-1_26SYMPLEXITY. “Symbiotic Human-Robot Solutions for Complex Surface Finishing Operations.” European project funded by E.U. through the H2020. Project no. 637080. Call: H2020-FoF-2014. Topic: FoF-06-2014. Starting date: 01/ 01/2015.Duration: 48 months. Accessed 2019 March. https://www.symplexity.eu/Vihlborg, P., I. Bryngelsson, B. Lindgren, L. G. Gunnarsson, and P. Graff. 2017. “Associatio between vibration exposure and hand-arm vibration symptoms in a Swedish mechanical industry.” February 2017.Vogel, J., Haddadin, S., Jarosiewicz, B., Simeral, J. D., Bacher, D., Hochberg, L. R., … van der Smagt, P. (2015). An assistive decision-and-control architecture for force-sensitive hand–arm systems driven by human–machine interfaces. The International Journal of Robotics Research, 34(6), 763-780. doi:10.1177/027836491456153

    Innovative Roboteranwendung: das Experiment Catch

    No full text
    Das nachfolgend näher beschriebene Projekt aus dem Umfeld der Automatisierung erscheint auf den ersten Blick ein wenig exotisch. Es dient jedoch als anschauliches Beispiel, welche weiteren Anwendungsfelder sich mit Robotern und Automationskomponenten – außerhalb der üblichen industriellen Gebiete wie Automobilindustrie oder Fertigungstechnik – erschließen lassen. Die Herausforderungen sind dabei zum Teil ähnlich und die Erkenntnisse auf das jeweils andere Gebiet übertragbar

    A new generation of collaborative robots for material handling

    No full text
    Purpose: The handling of material is a high resource consuming task in many different manufacturing industries and especially in the construction sector. Global demand for material-handling products is projected to rise by 7.0 percent annually until 2014 to a total of $119 billion. Typically, work on the construction site, in the materials distribution process or in the construction materials production, includes extensive material handling tasks. Advanced automation and robotics technologies can enhance the productivity of this process, guaranteeing at the same time the highest level of safety for workers. Modular reconfigurable robotic systems are considered as one of the most challenging topics. A worldwide cutting-edge technical solution for material handling, based on the development of a modular intelligent power assists systems (collaborative robots, COBOTS), is presented in this paper. Method: Conventional manually-guided handling systems lack an intuitive and r esponsive control and may lead to back discomfort and fatigue. A significant improvement has been achieved by power-assisted systems developed by Stanley Cobotics in the USA, as well by the first cobot prototypes in German industry implemented through cooperation of IPK and Schmidt-Handling GmbH. The proposed material handling approach would constitute a significant breakthrough by bridging the gap between fully automatic and manual technologies. The developed intelligent power systems are capable of working with people also in a direct physical contact, combining human flexibility, intelligence, and skills with the advantage of sophisticated technical systems. Safety issues have been considered to be of paramount importance. Results & Discussion: A modular flexible collaborative robot prototype has been designed and developed as a demonstration of the proposed new generation of material handling methodology
    corecore