34 research outputs found

    Salivary Metabolomics for Oral Precancerous Lesions: A Comprehensive Narrative Review

    Get PDF
    Oral submucous fibrosis (OSMF) is a chronic, potentially malignant disorder of the oral cavity, primarily associated with the consumption of areca nut products and other risk factors. Early and accurate diagnosis of OSMF is crucial to prevent its progression to oral cancer. In recent years, the field of metabolomics has gained momentum as a promising approach for disease detection and monitoring. Salivary metabolomics, a non-invasive and easily accessible diagnostic tool, has shown potential in identifying biomarkers associated with various oral diseases, including OSMF. This review synthesizes current literature on the application of salivary metabolomics in the context of OSMF detection. The review encompasses a comprehensive analysis of studies conducted over the past decade, highlighting advancements in analytical techniques, metabolomic profiling, and identified biomarkers linked to OSMF progression. The primary objective of this review is to provide a critical assessment of the feasibility and reliability of salivary metabolomics as a diagnostic tool for OSMF, along with its potential to differentiate OSMF from other oral disorders. In conclusion, salivary metabolomics holds great promise in revolutionizing OSMF detection through the identification of reliable biomarkers and the development of robust diagnostic models. However, challenges such as sample variability, validation of biomarkers, and standardization need to be addressed before its widespread clinical implementation. This review contributes to a comprehensive understanding of the current status, challenges, and future directions of salivary metabolomics in the realm of OSMF detection, emphasizing its potential impact on early intervention and improved patient outcomes

    Experimental study of solitonic dispersive wave in photonic crystal fiber

    No full text
    We experimentally observed the emission of phase-matched resonant radiation in the form of solitonic dispersive wave in a fabricated photonic crystal fiber by pumping picosecond and femtosecond pulses close to zero-dispersion wavelength in normal dispersion regime. The generation of such phase matched radiation does not require a soliton to be formed and red-shifted in nature. Shock front from the leading edge of the input pump initiates the resonant radiation. The radiation develops in the anomalous dispersion domain and found to be confined both in spectral and temporal domain The resonance mechanism can be well explained from the numerical simulation governed by generalized nonlinear Schrodinger equation

    Dispersive shock mediated resonant radiations in defocused nonlinear medium

    No full text
    We report the evolution of resonant radiation (RR) in a self-defocused nonlinear medium with two zero dispersion wavelengths. RR is generated from dispersive shock wave (DSW) front when the pump pulse is in non-solitonic regime close to first zero dispersion wavelength (ZDW). DSW is responsible for pulse splitting resulting in the generation of blue solitons when leading edge of the pump pulse hits the first ZDW. DSW also generates a red shifted dispersive wave (DW) in the presence of higher order dispersion coefficients. Further, DSW through cross-phase modulation with red shifted dispersive wave (DW) excites a localized radiation. The presence of zero nonlinearity point in the system restricts red-shift of RR and enhances the red shifting of DW. It also helps in the formation of DSW at shorter distance and squeezes the solitonic region beyond second zero dispersion point. Predicted results indicate that the spectral evolution depends on the product of Kerr nonlinearity and group velocity dispersion. (C) 2017 Elsevier B.V. All rights reserved

    Experimental study of solitonic dispersive wave in photonic crystal fiber

    No full text
    We experimentally observed the emission of phase-matched resonant radiation in the form of solitonic dispersive wave in a fabricated photonic crystal fiber by pumping picosecond and femtosecond pulses close to zero-dispersion wavelength in normal dispersion regime. The generation of such phase matched radiation does not require a soliton to be formed and red-shifted in nature. Shock front from the leading edge of the input pump initiates the resonant radiation. The radiation develops in the anomalous dispersion domain and found to be confined both in spectral and temporal domain. The resonance mechanism can be well explained from the numerical simulation governed by generalized nonlinear Schrödinger equation

    Effect of dispersion on supercontinuum generation of suspended core photonic crystal fiber

    No full text
    Supercontinuum generation in suspended core photonic crystal fiber is experimentally reported pumped with picosecond pulse at 30mW. Three different dimensions of fabricated fibers with distinct dispersion properties are employed to generate broadband white light source

    Polarization characteristics of metal filled suspended core photonic crystal fiber

    No full text
    We present the study of polarization characteristics of metal filled suspended core photonic crystal fiber. The numerical calculation shows that modal birefringence increases with the increase in core suspension factor

    Study of nonlinear dynamics in silver-nanoparticle-doped photonic crystal fiber

    No full text
    Linear and nonlinear properties of silver-nanoparticle-doped photonic crystal fibers (SNPCFs) are explored to obtain exciting nonlinear pulse dynamics. SNPCF offers additional control over the Kerr nonlinearity of the core glass. Unlike traditional PCFs, these composite fibers offer a significantly large negative nonlinearity at lower wavelengths. The interplay between large negative nonlinearity and dispersion leads to interesting dynamics of ultrashort pulse evolution where blueshifted Raman solitons are generated along with phase-matched radiations. Further, it is observed that the numeric sign of self-steepening coefficient provides an additional tool in harnessing the dispersive wave generation. (C) 2016 Optical Society of America

    Design and Fabrication of Microstructured Optical Fibers With Optimized Core Suspension for Enhanced Supercontinuum Generation

    No full text
    Nonlinear microstructured optical fibers (MOFs) offer better prospects in various interdisciplinary fields than conventional nonlinear fibers. High air filling fraction and small core are necessary to ensure high nonlinearity of MOFs. The air holes adjacent to the core can be elongated and tapered into the core in a controlled way during fiber drawing so that the solid core seems to be suspended in air with very thin silica struts connecting it to the matrix. This reduces the effective core area thereby increasing nonlinearity. In this study, the effect of core suspension on the nonlinearity and dispersion of MOFs are systematically investigated on the basis of a geometrical design parameter called suspension factor (SF). Detailed study reveals that MOF designs with enhanced nonlinearity can be obtained even with larger pitch and such MOF structures are easier to fabricate. Fiber drawing parameters which control the SF are precisely identified and optimized. Several fiber samples were drawn at different drawing conditions under constant monitoring and it was observed that high furnace temperature and high drawing speed are the two key parameters that ensure high SF. Further, the role of SF on nonlinear spectral broadening was experimentally investigated and it was found that MOF having high SF offers almost two octave-spanning supercontinuum
    corecore