17 research outputs found

    Antimony resistance mechanism in genetically different clinical isolates of Indian Kala-azar patients

    Get PDF
    The central theme of this enterprise is to find common features, if any, displayed by genetically different antimony (Sb)-resistant viscerotropic Leishmania parasites to impart Sb resistance. In a limited number of clinical isolates (n = 3), we studied the breadth of variation in the following dimensions: (a) intracellular thiol content, (b) cell surface expression of glycan having N-acetyl-D-galactosaminyl residue as the terminal sugar, and (c) gene expression of thiol-synthesizing enzymes (CBS, MST, gamma-GCS, ODC, and TR), antimony-reducing enzymes (TDR and ACR2), and antimonial transporter genes (AQP1, MRPA, and PRP1). One of the isolates, T5, that was genotypically characterized as Leishmania tropica, caused Indian Kala-azar and was phenotypically Sb resistant (T5-LT-SSG-R), while the other two were Leishmania donovani, out of which one isolate, AG83, is antimony sensitive (AG83-LD-SSG-S) and the other isolate, T8, is Sb resistant (T8-LD-SSG-R). Our study showed that the Sb-resistant parasites, regardless of their genotype, showed significantly higher intracellular thiol compared with Sb-sensitive AG83-LD-SSG-S. Seemingly, T5-LT-SSG-R showed about 1.9-fold higher thiol content compared with T8-LD-SSG-R which essentially mirrored cell surface N-acetyl-D-galactosaminyl expression. Except TR, the expression of the remaining thiol-synthesizing genes was significantly higher in T8-LD-SSG-R and T5-LT-SSG-R than the sensitive one, and between the Sb-resistant parasites, the latter showed a significantly higher expression. Furthermore, the genes for Sb-reducing enzymes increased significantly in resistant parasites regardless of genotype compared with the sensitive one, and between two resistant parasites, there was hardly any difference in expression. Out of three antimony transporters, AQP1 was decreased with the concurrent increase in MRPA and PRP1 in resistant isolates when compared with the sensitive counterpart. Interestingly, no difference in expression of the above-mentioned transporters was noted between two Sb-resistant isolates. The enduring image that resonated from our study is that the genetically diverse Sb-resistant parasites showed enhanced thiol-synthesizing and antimony transporter gene expression than the sensitive counterpart to confer a resistant phenotype

    In vivo experiments demonstrate the potent antileishmanial efficacy of repurposed suramin in visceral leishmaniasis

    Get PDF
    Background: Treatment failure and resistance to the commonly used drugs remains a major obstacle for successful chemotherapy against visceral leishmaniasis (VL). Since the development of novel therapeutics involves exorbitant costs, the effectiveness of the currently available antitrypanosomatid drug suramin has been investigated as an antileishmanial, specifically for VL,in vitro and in animal model experiments. Methodology/Principal: Leishmania donovani promastigotes were treated with suramin and studies were performed to determine the extent and mode of cell mortality, cell cycle arrest and other in vitro parameters. In addition, L. donovani infected BALB/c mice were administered suramin and a host of immunological parameters determined to estimate the antileishmanial potency of the drug. Finally, isothermal titration calorimetry (ITC) and enzymatic assays were used to probe the interaction of the drug with one of its putative targets namely parasitic phosphoglycerate kinase (LmPGK). Findings: The in vitro studies revealed the potential efficacy of suramin against the Leishmania parasite. This observation was further substantiated in the in vivo murine model, which demonstrated that upon suramin administration, the Leishmania infected BALB/c mice were able to reduce the parasitic burden and also generate the host protective immunological responses. ITC and enzyme assays confirmed the binding and consequent inhibition of LmPGK due to the drug. Conclusions/Significance: All experiments affirmed the efficacy of suramin against L. donovani infection, which could possibly lead to its inclusion in the repertoire of drugs against VL

    Molecular identification of an old clinical isolate of Indian Kala-azar

    No full text
    Molecular characterization is an important task for species identification of the isolates belonging to different Leishmania species. Clinical symptoms, tissue tropism, vector preference, reservoir and geographical distribution may act as distinguishing parameters but not always decisive. On the other hand, modern taxonomic tools employed to divulge characteristics of the genome or protein molecules of the parasite would be convincing and for Leishmania sp., they include nuclear and kDNA buoyant density, multi locus enzyme electrophoresis (MLEE), RAPD, RFLP or use of monoclonal antibodies etc. In the present study, we intend to establish the identification of an old clinical isolate of Indian Kala-azar, familiarly known as ‘UR6’ by MLEE, RAPD, RFLP and species specific monoclonal antibodies. UR6 has been isolated from a confirmed Kala-azar patient admitted in Calcutta School of Tropical Medicine, Kolkata in 1978. From then it is being regularly used for various scientific studies by the Leishmania Research Group of India and abroad. The isozyme profile of UR6 showed similar electrophoretic mobility that of WHO reference strain for Leishmania tropica, K27. Similar findings were obtained in the RAPD and RFLP assays. Screening with species specific monoclonal antibodies showed its strong reactivity towards L. tropica. The Jaccard’s Similarity Indices were calculated

    Evaluation of s.c. route of immunization by homologous radio attenuated live vaccine in experimental murine model of visceral leishmaniasis

    No full text
    Our previous studies in BALB/c mice showed substantial protection against the experimental murine visceral leishmaniasis (MVL) when the animals were immunized with γ-irradiated live Leishmania donovani parasites through intra peritoneal (i.p.) and intra muscular (i.m.) routes respectively. The observations encouraged us to check the prophylactic efficacy of subcutaneous (s.c.) route as it is better alternative for human trial. The mice immunized with two subsequent doses of the radio attenuated homologous vaccine were challenged with virulent L. donovani parasites. Seventy-five days post infection, the animals were sacrificed. The extent of protection against the disease was evaluated by assessing the reduction of parasite burden in spleen and liver, the generation of free radicals (NO & ROS) and release of the cytokines from T-lymphocyte helper 1 (Th 1) and T-lymphocyte helper 2 (Th 2) along with the measurement of the serum immunoglobulins. The reductions in parasitic burden were observed up to 21 and 24 % in spleen and liver of the immunized groups with NO and ROS productions 27 and 34 % respectively. Whereas the increase in IFN gamma releases was between 19 and 34 %, the decrease in IL-10 release was not more than 22 %. This indicates the failure of the establishment of pronounced Th1 ambience which was further corroborated by the observed IgG2a and IgG1 ratio. The present study when compared with our previous observations with i.m. and i.p. routes revealed that s.c. route may not be a good choice for the use of radio attenuated vaccine

    Nucleoside-derived metallohydrogel induces cell death in leishmania parasites

    No full text
    Self-assembled hydrogels by virtue of their unique 3D network and tunability have extensively been explored for bio-medical applications like tissue engineering, delivery and release of therapeutic agents, etc. Herein, we demonstrate for the first-time nucleoside-based biocompatible hydrogels with a remarkable leishmanicidal effect against both Leishmania major promastigotes and amastigotes and no cytotoxic effect on the macrophage cell line. In this work, a series of biocompatible hydrogels have been synthesized by silver ion-driven self-assembly of natural nucleoside and nucleotide-like cytidine and 5′-GMP. The supramolecular metallogel obtained from the assembly of cytidine and boronic acid is capable of inducing apoptotic-like cell death of protozoan parasite by causing damage to the membrane as well as DNA. These hydrogels could find promising applications in combating cutaneous leishmaniasis by topical treatment

    Leishmania genomics: a brief account

    No full text
    Leishmaniasis, one of the neglected tropical diseases is serious health concern globally. The disease is caused by protozoan parasites belonging to genus Leishmania. The main forms of disease are Cutaneous Leishmaniasis (CL), Mucocutaneous Leishmaniasis and Visceral Leishmaniasis (VL). VL or Kala-azar is the most severe form and 90% of global VL cases occur in India, Bangladesh, Nepal, Sudan, Ethiopia and Brazil, while most cases (70–75%) of CL occur in Afghanistan, Brazil, Iran, Ethiopia, Costa Rica and Peru etc. They are spread by the bites of female sand flies of the genus Phlebotomus in the Old World and of the genus Lutzomyia in the New World. It is essential to determine whether genetic variability of the parasites is associated with the different clinical manifestations and drug resistance of Leishmania sp. Various molecular biological methods have been standardized to study the genomes of the parasites in order to understand the parasites better. Most updated high-throughput approaches are whole genome sequencing, comparative genomics, transcriptomics and proteomics. The present review gives an overview of the advancement in the field of the Leishmania genome analysis which would help workers in the field to understand the problem of emergence of drug resistance, current epidemiological status, host parasite interaction and designing the drugs

    MOESM1 of In vitro screening of known drugs identified by scaffold hopping techniques shows promising leishmanicidal activity for suramin and netilmicin

    Get PDF
    Additional file 1. Drug Susceptibility of Leishmania major promastigotes towards selected drugs. The drugs triamterene, framycetin, kanamycin, tobramycin, acarbose, gentamicin, lidocaine, primaquine, paromomycin, suramin and netilmicin were screened for their antileishmanial efficacy (IC50)

    Miltefosine Resistant Field Isolate From Indian Kala-Azar Patient Shows Similar Phenotype in Experimental Infection

    Get PDF
    Abstract Emergence of resistance to drugs used to treat the Indian Kala-azar patients makes control strategy shattered. In this bleak situation, Miltefosine (MIL) was introduced to treat mainly antimonial unresponsive cases. Within years, resistance to MIL has been reported. While checking the MIL sensitivity of the recent KA clinical isolates (n = 26), we came across one isolate which showed four times more EC50 for MIL than that of MIL-Sensitive (MIL-S) isolates and considered as putative MIL-Resistant (MIL-R). The expressions of LdMT and LdRos3 genes of this isolate were found down regulated. Th1/Th2 cytokines, ROS and NO, FACS dot plots and mitochondrial trans membrane potential measurement were performed. In vivo hamster model with this MIL-R isolate showed much lesser reduction in liver weight (17.5%) compared to average reduction in liver weight (40.2%) of the animals infected with MIL-S isolates. The splenic and hepatic stamps smears of MIL-R infected hamsters revealed the retention of parasite load of about 51.45%. The splenocytes of these animals failed to proliferate anti leishmanial T-cells and lack of cell mediated immunity hampered recovery. Thus, these phenotypic expressions of experimental model may be considered similar to that of the MIL unresponsive patients. This is first such kind of report

    Genetic markers for antimony resistant clinical isolates differentiation from Indian Kala-azar

    No full text
    Visceral Leishmaniasis or Kala-azar is caused by the protozoan parasites belonging to the Genus Leishmania. Once thought eradicated from the Indian subcontinent, the disease came back with drug resistance to almost all prevalent drugs. Molecular epidemiological studies revealed the polymorphic nature of the population of the main player of the disease, Leishmania donovani and involvement of other species (L. tropica) and other genus (Leptomonas) with the disease. This makes control measures almost futile. It also strongly demands the characterization of each and every isolate mandatory which is not done. In this background, the present study has been carried out to assess the genetic attributes of each clinical isolates (n = 26) of KA and PKDL patients from India and Bangladesh. All the isolates were characterized through Restriction Fragment Length Polymorphism (RFLP) analysis to ascertain their species identity. 46.2% of the isolates were found to be Sodium Stibogluconate (SSG) resistant by amastigote-macrophage model. When the clinical isolates were subjected to Single Stranded Conformation Polymorphism (SSCP) of Internal Transcribed Spacer 1 (ITS1), Internal Transcribed Spacer 2 (ITS2) and some anonymous markers, the drug resistant Leishmania isolates of SSG can be distinguished from the sensitive isolates distinctly. This study showed for the first time, the genetic markers for SSG drug resistance of Indian Kala-azar clinical isolates

    MOESM3 of In vitro screening of known drugs identified by scaffold hopping techniques shows promising leishmanicidal activity for suramin and netilmicin

    No full text
    Additional file 3. Representative isobolograms of in vitro interactions between the respective drugs. Representative isobolograms for curcumin–netilmicin
    corecore