639 research outputs found
Cold collisions between atoms in optical lattices
We have simulated binary collisions between atoms in optical lattices during
Sisyphus cooling. Our Monte Carlo Wave Function simulations show that the
collisions selectively accelerate mainly the hotter atoms in the thermal
ensemble, and thus affect the steady state which one would normally expect to
reach in Sisyphus cooling without collisions.Comment: 4 pages, 1 figur
Quantum and Semiclassical Calculations of Cold Atom Collisions in Light Fields
We derive and apply an optical Bloch equation (OBE) model for describing
collisions of ground and excited laser cooled alkali atoms in the presence of
near-resonant light. Typically these collisions lead to loss of atoms from
traps. We compare the results obtained with a quantum mechanical complex
potential treatment, semiclassical Landau-Zener models with decay, and a
quantum time-dependent Monte-Carlo wave packet (MCWP) calculation. We formulate
the OBE method in both adiabatic and diabatic representations. We calculate the
laser intensity dependence of collision probabilities and find that the
adiabatic OBE results agree quantitatively with those of the MCWP calculation,
and qualitatively with the semiclassical Landau-Zener model with delayed decay,
but that the complex potential method or the traditional Landau-Zener model
fail in the saturation limit.Comment: 21 pages, RevTex, 7 eps figures embedded using psfig, see also
http://www.physics.helsinki.fi/~kasuomin
Temporal Interferometry: A Mechanism for Controlling Qubit Transitions During Twisted Rapid Passage with Possible Application to Quantum Computing
In an adiabatic rapid passage experiment, the Bloch vector of a two-level
system (qubit) is inverted by slowly inverting an external field to which it is
coupled, and along which it is initially aligned. In twisted rapid passage, the
external field is allowed to twist around its initial direction with azimuthal
angle at the same time that it is inverted. For polynomial twist:
. We show that for , multiple avoided crossings
can occur during the inversion of the external field, and that these crossings
give rise to strong interference effects in the qubit transition probability.
The transition probability is found to be a function of the twist strength ,
which can be used to control the time-separation of the avoided crossings, and
hence the character of the interference. Constructive and destructive
interference are possible. The interference effects are a consequence of the
temporal phase coherence of the wavefunction. The ability to vary this
coherence by varying the temporal separation of the avoided crossings renders
twisted rapid passage with adjustable twist strength into a temporal
interferometer through which qubit transitions can be greatly enhanced or
suppressed. Possible application of this interference mechanism to construction
of fast fault-tolerant quantum CNOT and NOT gates is discussed.Comment: 29 pages, 16 figures, submitted to Phys. Rev.
Atomic collision dynamics in optical lattices
We simulate collisions between two atoms, which move in an optical lattice
under the dipole-dipole interaction. The model describes simultaneously the two
basic dynamical processes, namely the Sisyphus cooling of single atoms, and the
light-induced inelastic collisions between them. We consider the J=1/2 -> J=3/2
laser cooling transition for Cs, Rb and Na. We find that the hotter atoms in a
thermal sample are selectively lost or heated by the collisions, which modifies
the steady state distribution of atomic velocities, reminiscent of the
evaporative cooling process.Comment: 17 pages, 15 figure
Population trapping due to cavity losses
In population trapping the occupation of a decaying quantum level keeps a
constant non-zero value. We show that an atom-cavity system interacting with an
environment characterized by a non-flat spectrum, in the non-Markovian limit,
exhibits such a behavior, effectively realizing the preservation of
nonclassical states against dissipation. Our results allow to understand the
role of cavity losses in hybrid solid state systems and pave the way to the
proper description of leakage in the recently developed cavity quantum
electrodynamic systems.Comment: 4 pages, 3 figures, version accepted for publication on Phys. Rev.
Environment-dependent dissipation in quantum Brownian motion
The dissipative dynamics of a quantum Brownian particle is studied for
different types of environment. We derive analytic results for the time
evolution of the mean energy of the system for Ohmic, sub-Ohmic and super-Ohmic
environments, without performing the Markovian approximation. Our results allow
to establish a direct link between the form of the environmental spectrum and
the thermalization dynamics. This in turn leads to a natural explanation of the
microscopic physical processes ruling the system time evolution both in the
short-time non-Markovian region and in the long-time Markovian one. Our
comparative study of thermalization for different environments sheds light on
the physical contexts in which non-Markovian dissipation effects are dominant.Comment: 10 pages, 6 figures, v2: added new references and paragraph
Open system dynamics with non-Markovian quantum jumps
We discuss in detail how non-Markovian open system dynamics can be described
in terms of quantum jumps [J. Piilo et al., Phys. Rev. Lett. 100, 180402
(2008)]. Our results demonstrate that it is possible to have a jump description
contained in the physical Hilbert space of the reduced system. The developed
non-Markovian quantum jump (NMQJ) approach is a generalization of the Markovian
Monte Carlo Wave Function (MCWF) method into the non-Markovian regime. The
method conserves both the probabilities in the density matrix and the norms of
the state vectors exactly, and sheds new light on non-Markovian dynamics. The
dynamics of the pure state ensemble illustrates how local-in-time master
equation can describe memory effects and how the current state of the system
carries information on its earlier state. Our approach solves the problem of
negative jump probabilities of the Markovian MCWF method in the non-Markovian
regime by defining the corresponding jump process with positive probability.
The results demonstrate that in the theoretical description of non-Markovian
open systems, there occurs quantum jumps which recreate seemingly lost
superpositions due to the memory.Comment: 19 pages, 10 figures. V2: Published version. Discussion section
shortened and some other minor changes according to the referee's suggestion
Collisions of cold magnesium atoms in a weak laser field
We use quantum scattering methods to calculate the light-induced collisional
loss of laser-cooled and trapped magnesium atoms for detunings up to 30 atomic
linewidths to the red of the 1S_0-1P_1 cooling transition. Magnesium has no
hyperfine structure to complicate the theoretical studies. We evaluate both the
radiative and nonradiative mechanisms of trap loss. The radiative escape
mechanism via allowed 1Sigma_u excitation is dominant for more than about one
atomic linewidth detuning. Molecular vibrational structure due to
photoassociative transitions to bound states begins to appear beyond about ten
linewidths detuning.Comment: 4 pages with 3 embedded figure
- …