19 research outputs found

    Novel strong tissue specific promoter for gene expression in human germ cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tissue specific promoters may be utilized for a variety of applications, including programmed gene expression in cell types, tissues and organs of interest, for developing different cell culture models or for use in gene therapy. We report a novel, tissue-specific promoter that was identified and engineered from the native upstream regulatory region of the human gene <it>NDUFV1 </it>containing an endogenous retroviral sequence.</p> <p>Results</p> <p>Among seven established human cell lines and five primary cultures, this modified <it>NDUFV1 </it>upstream sequence (mNUS) was active only in human undifferentiated germ-derived cells (lines Tera-1 and EP2102), where it demonstrated high promoter activity (~twice greater than that of the SV40 early promoter, and comparable to the routinely used cytomegaloviral promoter). To investigate the potential applicability of the mNUS promoter for biotechnological needs, a construct carrying a recombinant cytosine deaminase (RCD) suicide gene under the control of mNUS was tested in cell lines of different tissue origin. High cytotoxic effect of RCD with a cell-death rate ~60% was observed only in germ-derived cells (Tera-1), whereas no effect was seen in a somatic, kidney-derived control cell line (HEK293). In further experiments, we tested mNUS-driven expression of a hyperactive <it>Sleeping Beauty </it>transposase (SB100X). The mNUS-SB100X construct mediated stable transgene insertions exclusively in germ-derived cells, thereby providing further evidence of tissue-specificity of the mNUS promoter.</p> <p>Conclusions</p> <p>We conclude that mNUS may be used as an efficient promoter for tissue-specific gene expression in human germ-derived cells in many applications. Our data also suggest that the 91 bp-long sequence located exactly upstream <it>NDUFV1 </it>transcriptional start site plays a crucial role in the activity of this gene promoter <it>in vitro </it>in the majority of tested cell types (10/12), and an important role - in the rest two cell lines.</p

    Pan-cancer experimental characteristic of human transcriptional patterns connected with telomerase reverse transcriptase (TERT) gene expression status

    Get PDF
    The TERT gene encodes the reverse transcriptase subunit of telomerase and is normally transcriptionally suppressed in differentiated human cells but reactivated in cancers where its expression is frequently associated with poor survival prognosis. Here we experimentally assessed the RNA sequencing expression patterns associated with TERT transcription in 1039 human cancer samples of 27 tumor types. We observed a bimodal distribution of TERT expression where ∼27% of cancer samples did not express TERT and the rest showed a bell-shaped distribution. Expression of TERT strongly correlated with 1443 human genes including 103 encoding transcriptional factor proteins. Comparison of TERT- positive and negative cancers showed the differential activation of 496 genes and 1975 molecular pathways. Therein, 32/38 (84%) of DNA repair pathways were hyperactivated in TERT+ cancers which was also connected with accelerated replication, transcription, translation, and cell cycle progression. In contrast, the level of 40 positive cell cycle regulator proteins and a set of epithelial-to-mesenchymal transition pathways was specific for the TERT- group suggesting different proliferation strategies for both groups of cancer. Our pilot study showed that the TERT+ group had ∼13% of cancers with C228T or C250T mutated TERT promoter. However, the presence of promoter mutations was not associated with greater TERT expression compared with other TERT+ cancers, suggesting parallel mechanisms of its transcriptional activation in cancers. In addition, we detected a decreased expression of L1 retrotransposons in the TERT+ group, and further decreased L1 expression in promoter mutated TERT+ cancers. TERT expression was correlated with 17 genes encoding molecular targets of cancer therapeutics and may relate to differential survival patterns of TERT- positive and negative cancers

    Cancer fusion transcripts with human non-coding RNAs

    Get PDF
    Cancer chimeric, or fusion, transcripts are thought to most frequently appear due to chromosomal aberrations that combine moieties of unrelated normal genes. When being expressed, this results in chimeric RNAs having upstream and downstream parts relatively to the breakpoint position for the 5’- and 3’-fusion components, respectively. As many other types of cancer mutations, fusion genes can be of either driver or passenger type. The driver fusions may have pivotal roles in malignisation by regulating survival, growth, and proliferation of tumor cells, whereas the passenger fusions most likely have no specific function in cancer. The majority of research on fusion gene formation events is concentrated on identifying fusion proteins through chimeric transcripts. However, contemporary studies evidence that fusion events involving non-coding RNA (ncRNA) genes may also have strong oncogenic potential. In this review we highlight most frequent classes of ncRNAs fusions and summarize current understanding of their functional roles. In many cases, cancer ncRNA fusion can result in altered concentration of the non-coding RNA itself, or it can promote protein expression from the protein-coding fusion moiety. Differential splicing, in turn, can enrich the repertoire of cancer chimeric transcripts, e.g. as observed for the fusions of circular RNAs and long non-coding RNAs. These and other ncRNA fusions are being increasingly recognized as cancer biomarkers and even potential therapeutic targets. Finally, we discuss the use of ncRNA fusion genes in the context of cancer detection and therapy

    In search for geroprotectors: in silico screening and in vitro validation of signalome-level mimetics of young healthy state

    Get PDF
    ABSTRACT Populations in developed nations throughout the world are rapidly aging, and the search for geroprotectors, or anti-aging interventions, has never been more important. Yet while hundreds of geroprotectors have extended lifespan in animal models, none have yet been approved for widespread use in humans. GeroScope is a computational tool that can aid prediction of novel geroprotectors from existing human gene expression data. GeroScope maps expression differences between samples from young and old subjects to aging-related signaling pathways, then profiles pathway activation strength (PAS) for each condition. Known substances are then screened and ranked for those most likely to target differential pathways and mimic the young signalome. Here we used GeroScope and shortlisted ten substances, all of which have lifespan-extending effects in animal models, and tested 6 of them for geroprotective effects in senescent human fibroblast cultures. PD-98059, a highly selective MEK1 inhibitor, showed both life-prolonging and rejuvenating effects. Natural compounds like N-acetyl-L-cysteine, Myricetin and Epigallocatechin gallate also improved several senescence-associated properties and were further investigated with pathway analysis. This work not only highlights several potential geroprotectors for further study, but also serves as a proof-of-concept for GeroScope, Oncofinder and other PAS-based methods in streamlining drug prediction, repurposing and personalized medicine

    Studies of removing copper ions from water with the seed coats of grain crops

    No full text
    This paper presents the studies of sorbing copper ions in simulated water with the seed coats of barley, wheat, and oat grains. Isotherms were built for the Cu2+ sorption at the initial concentrations of 0.315-62.947 mmol/dm3. It is shown that the sorption isotherms of all grain samples correspond with IUPAC 1b and are described by Langmuir equation with the confidence degree of 0.999. It is also shown that sorption runs intensively at the initial contaminant concentration ranging from 0.315 mmol/dm3 through 15.737 mmol/dm3, while the sorption rate observed decreases significantly at the concentration exceeding 15.737 mmol/dm3, which works out to 1,000 mg/dm3. The sorption isotherms built is indicative of monomolecular adsorption running

    Subtype of Neuroblastoma Cells with High KIT Expression Are Dependent on KIT and Its Knockdown Induces Compensatory Activation of Pro-Survival Signaling

    No full text
    Neuroblastoma (NB) is a pediatric cancer with high clinical and molecular heterogeneity, and patients with high-risk tumors have limited treatment options. Receptor tyrosine kinase KIT has been identified as a potential marker of high-risk NB and a promising target for NB treatment. We investigated 19,145 tumor RNA expression and molecular pathway activation profiles for 20 cancer types and detected relatively high levels of KIT expression in NB. Increased KIT expression was associated with activation of cell survival pathways, downregulated apoptosis induction, and cell cycle checkpoint control pathways. KIT knockdown with shRNA encoded by lentiviral vectors in SH-SY5Y cells led to reduced cell proliferation and apoptosis induction up to 50%. Our data suggest that apoptosis induction was caused by mitotic catastrophe, and there was a 2-fold decrease in percentage of G2-M cell cycle phase after KIT knockdown. We found that KIT knockdown in NB cells leads to strong upregulation of other pro-survival growth factor signaling cascades such as EPO, NGF, IL-6, and IGF-1 pathways. NGF, IGF-1 and EPO were able to increase cell proliferation in KIT-depleted cells in an ERK1/2-dependent manner. Overall, we show that KIT is a promising therapeutic target in NB, although such therapy efficiency could be impeded by growth factor signaling activation

    Heterogeneity of Integrin αIIbβ3 Function in Pediatric Immune Thrombocytopenia Revealed by Continuous Flow Cytometry Analysis

    No full text
    Immune thrombocytopenia (ITP) is an autoimmune condition primarily induced by the loss of immune tolerance to the platelet glycoproteins. Here we develop a novel flow cytometry approach to analyze integrin αIIbβ3 functioning in ITP in comparison with Glanzmann thrombasthenia (GT) (negative control) and healthy pediatric donors (positive control). Continuous flow cytometry of Fura-Red-loaded platelets from whole hirudinated blood was used for the characterization of platelet responses to conventional activators. Calcium levels and fibrinogen binding were normalized to ionomycin-induced responses. Ex vivo thrombus formation on collagen was observed in parallel-plate flow chambers. Platelets from all ITP patients had significantly higher cytosolic calcium concentration in the quiescent state compared to healthy donors (15 ± 5 nM vs. 8 ± 5 nM), but calcium increases in response to all activators were normal. Clustering analysis revealed two subpopulations of ITP patients: the subgroup with high fibrinogen binding (HFB), and the subgroup with low fibrinogen binding (LFB) (8% ± 5% for LFB vs. 16% ± 3% for healthy donors in response to ADP). GT platelets had calcium mobilization (81 ± 23 nM), fibrinogen binding (5.1% ± 0.3%) and thrombus growth comparable to the LFB subgroup. Computational modeling suggested phospholipase C-dependent platelet pre-activation for the HFB subgroup and lower levels of functional integrin molecules for the LFB group

    Oncobox Bioinformatical Platform for Selecting Potentially Effective Combinations of Target Cancer Drugs Using High-Throughput Gene Expression Data

    No full text
    Sequential courses of anticancer target therapy lead to selection of drug-resistant cells, which results in continuous decrease of clinical response. Here we present a new approach for predicting effective combinations of target drugs, which act in a synergistic manner. Synergistic combinations of drugs may prevent or postpone acquired resistance, thus increasing treatment efficiency. We cultured human ovarian carcinoma SKOV-3 and neuroblastoma NGP-127 cancer cell lines in the presence of Tyrosine Kinase Inhibitors (Pazopanib, Sorafenib, and Sunitinib) and Rapalogues (Temsirolimus and Everolimus) for four months and obtained cell lines demonstrating increased drug resistance. We investigated gene expression profiles of intact and resistant cells by microarrays and analyzed alterations in 378 cancer-related signaling pathways using the bioinformatical platform Oncobox. This revealed numerous pathways linked with development of drug resistant phenotypes. Our approach is based on targeting proteins involved in as many as possible signaling pathways upregulated in resistant cells. We tested 13 combinations of drugs and/or selective inhibitors predicted by Oncobox and 10 random combinations. Synergy scores for Oncobox predictions were significantly higher than for randomly selected drug combinations. Thus, the proposed approach significantly outperforms random selection of drugs and can be adopted to enhance discovery of new synergistic combinations of anticancer target drugs

    Large-scale transcriptomics-driven approach revealed overexpression of CRNDE as a poor survival prognosis biomarker in glioblastoma

    Full text link
    Glioblastoma is the most common and malignant brain malignancy worldwide, with a 10-year survival of only 0.7%. Aggressive multimodal treatment is not enough to increase life expectancy and provide good quality of life for glioblastoma patients. In addition, despite decades of research, there are no established biomarkers for early disease diagnosis and monitoring of patient response to treatment. High throughput sequencing technologies allow for the identification of unique molecules from large clinically annotated datasets. Thus, the aim of our study was to identify significant molecular changes between short- and long-term glioblastoma survivors by transcriptome RNA sequencing profiling, followed by differential pathway-activation-level analysis. We used data from the publicly available repositories The Cancer Genome Atlas (TCGAnumber of annotated cases = 135) and Chinese Glioma Genome Atlas (CGGAnumber of annotated cases = 218), and experimental clinically annotated glioblastoma tissue samples from the Institute of Pathology, Faculty of Medicine in Ljubljana corresponding to 2-58 months overall survival (n = 16). We found one differential gene for long noncoding RNA CRNDE whose overexpression showed correlation to poor patient OS. Moreover, we identified overlapping sets of congruently regulated differential genes involved in cell growth, division, and migration, structure and dynamics of extracellular matrix, DNA methylation, and regulation through noncoding RNAs. Gene ontology analysis can provide additional information about the function of protein- and nonprotein-coding genes of interest and the processes in which they are involved. In the future, this can shape the design of more targeted therapeutic approaches

    Personalized prescription of tyrosine kinase inhibitors in unresectable metastatic cholangiocarcinoma

    No full text
    Abstract Background Cholangiocarcinoma is an aggressive tumor with poor prognosis. Most of the cases are not available for surgery at the stage of the diagnosis and the best clinical practice chemotherapy results in about 12-month median survival. Several tyrosine kinase inhibitors (TKIs) are currently under investigation as an alternative treatment option for cholangiocarcinoma. Thus, the report of personalized selection of effective inhibitor and case outcome are of clinical interest. Case presentation Here we report a case of aggressive metastatic cholangiocarcinoma (MCC) in 72-year-old man, sequentially treated with two targeted chemotherapies. Initially disease quickly progressed during best clinical practice care (gemcitabine in combination with cisplatin or capecitabine), which was accompanied by significant decrease of life quality. Monotherapy with TKI sorafenib was prescribed to the patient, which resulted in stabilization of tumor growth and elimination of pain. The choice of the inhibitor was made based on high-throughput screening of gene expression in the patient’s tumor biopsy, utilized by Oncobox platform to build a personalized rating of potentially effective target therapies. However, time to progression after start of sorafenib administration did not exceed 6 months and the regimen was changed to monotherapy with Pazopanib, another TKI predicted to be effective for this patient according to the same molecular test. It resulted in disease progression according to RECIST with simultaneous elimination of sorafenib side effects such as rash and hand-foot syndrome. After 2 years from the diagnosis of MCC the patient was alive and physically active, which is substantially longer than median survival for standard therapy. Conclusion This case evidences that sequential personalized prescription of different TKIs may show promising efficacy in terms of survival and quality of life in MCC
    corecore