657 research outputs found

    Deriving asteroid mineralogies from reflectance spectra: Implications for the MUSES-C target asteroid

    Get PDF
    In an effort to both bolster the spectral database on ordinary chondrites and constrain our ability to deconvolve modal, mineral chemistry and bulk chemical composition information from ordinary chondrites, we have initiated a spectral study of samples with known bulk compositions from the Smithsonian Institution\u27s Analyzed Meteorite Powder collection. In this paper, we focus on deriving a better formula for determining asteroid mineralogies from reflectance spectra. The MUSES-C mission to asteroid 25143 1998 SF36 will allow any derived mineralogies to be tested with a returned sample

    Ab Initio Calculation of Impurity Effects in Copper Oxide Materials

    Full text link
    We describe a method for calculating, within density functional theory, the electronic structure associated with typical defects which substitute for Cu in the CuO2 planes of high-Tc superconducting materials. The focus is primarily on Bi2Sr2CaCu2O8, the material on which most STM measurements of impurity resonances in the superconducting state have been performed. The magnitudes of the effective potentials found for Zn, Ni and vacancies on the in-plane Cu sites in this host material are remarkably consistent with phenomenological fits of potential scattering models to STM resonance energies. The effective potential ranges are quite short, of order 1 A with weak long range tails, in contrast to some current models of extended potentials which attempt to fit STM data. For the case of Zn and Cu vacancies, the effective potentials are strongly repulsive, and states on the impurity site near the Fermi level are simply removed. The local density of states (LDOS) just above the impurity is nevertheless found to be a maximum in the case of Zn and a local minimum in case of the vacancy, in agreement with experiment. The Zn and Cu vacancy patterns are explained as due to the long-range tails of the effective impurity potential at the sample surface. The case of Ni is richer due to the Ni atom's strong hybridization with states near the Fermi level; in particular, the short range part of the potential is attractive, and the LDOS is found to vary rapidly with distance from the surface and from the impurity site. We propose that the current controversy surrounding the observed STM patterns can be resolved by properly accounting for the effective impurity potentials and wave-functions near the cuprate surface. Other aspects of the impurity states for all three species are discussed.Comment: 37 pp. pdf including figures, submitted to Phys. Rev.

    Orbital Configurations and Magnetic Properties of Double-Layered Antiferromagnet Cs3_3Cu2_2Cl4_4Br3_3

    Full text link
    We report the single-crystal X-ray analysis and magnetic properties of a new double-layered perovskite antiferromagnet, Cs3_3Cu2_2Cl4_4Br3_3. This structure is composed of Cu2_2Cl4_4Br3_3 double layers with elongated CuCl4_4Br2_2 octahedra and is closely related to the Sr3_3Ti2_2O7_7 structure. An as-grown crystal has a singlet ground state with a large excitation gap of Δ/kB2000\Delta/k_{\rm B}\simeq 2000 K, due to the strong antiferromagnetic interaction between the two layers. Cs3_3Cu2_2Cl4_4Br3_3 undergoes a structural phase transition at Ts330T_{\rm s}\simeq330 K accompanied by changes in the orbital configurations of Cu2+^{2+} ions. Once a Cs3_3Cu2_2Cl4_4Br3_3 crystal is heated above TsT_{\rm s}, its magnetic susceptibility obeys the Curie-Weiss law with decreasing temperature even below TsT_{\rm s} and does not exhibit anomalies at TsT_{\rm s}. This implies that in the heated crystal, the orbital state of the high-temperature phase remains unchanged below TsT_{\rm s}, and thus, this orbital state is the metastable state. The structural phase transition at TsT_{\rm s} is characterized as an order-disorder transition of Cu2+^{2+} orbitals.Comment: 6pages. 6figures, to appear in J. Phys. Soc. Jpn. Vol.76 No.

    Poly(β-Amino Ester)-Nanoparticle Mediated Transfection of Retinal Pigment Epithelial Cells In Vitro and In Vivo

    Get PDF
    A variety of genetic diseases in the retina, including retinitis pigmentosa and leber congenital amaurosis, might be excellent targets for gene delivery as treatment. A major challenge in non-viral gene delivery remains finding a safe and effective delivery system. Poly(beta-amino ester)s (PBAEs) have shown great potential as gene delivery reagents because they are easily synthesized and they transfect a wide variety of cell types with high efficacy in vitro. We synthesized a combinatorial library of PBAEs and evaluated them for transfection efficacy and toxicity in retinal pigment epithelial (ARPE-19) cells to identify lead polymer structures and transfection formulations. Our optimal polymer (B5-S5-E7 at 60 w/w polymer∶DNA ratio) transfected ARPE-19 cells with 44±5% transfection efficacy, significantly higher than with optimized formulations of leading commercially available reagents Lipofectamine 2000 (26±7%) and X-tremeGENE HP DNA (22±6%); (p<0.001 for both). Ten formulations exceeded 30% transfection efficacy. This high non-viral efficacy was achieved with comparable cytotoxicity (23±6%) to controls; optimized formulations of Lipofectamine 2000 and X-tremeGENE HP DNA showed 15±3% and 32±9% toxicity respectively (p>0.05 for both). Our optimal polymer was also significantly better than a gold standard polymeric transfection reagent, branched 25 kDa polyethyleneimine (PEI), which achieved only 8±1% transfection efficacy with 25±6% cytotoxicity. Subretinal injections using lyophilized GFP-PBAE nanoparticles resulted in 1.1±1×103-fold and 1.5±0.7×103-fold increased GFP expression in the retinal pigment epithelium (RPE)/choroid and neural retina respectively, compared to injection of DNA alone (p = 0.003 for RPE/choroid, p<0.001 for neural retina). The successful transfection of the RPE in vivo suggests that these nanoparticles could be used to study a number of genetic diseases in the laboratory with the potential to treat debilitating eye diseases

    Predicate Abstraction for Linked Data Structures

    Full text link
    We present Alias Refinement Types (ART), a new approach to the verification of correctness properties of linked data structures. While there are many techniques for checking that a heap-manipulating program adheres to its specification, they often require that the programmer annotate the behavior of each procedure, for example, in the form of loop invariants and pre- and post-conditions. Predicate abstraction would be an attractive abstract domain for performing invariant inference, existing techniques are not able to reason about the heap with enough precision to verify functional properties of data structure manipulating programs. In this paper, we propose a technique that lifts predicate abstraction to the heap by factoring the analysis of data structures into two orthogonal components: (1) Alias Types, which reason about the physical shape of heap structures, and (2) Refinement Types, which use simple predicates from an SMT decidable theory to capture the logical or semantic properties of the structures. We prove ART sound by translating types into separation logic assertions, thus translating typing derivations in ART into separation logic proofs. We evaluate ART by implementing a tool that performs type inference for an imperative language, and empirically show, using a suite of data-structure benchmarks, that ART requires only 21% of the annotations needed by other state-of-the-art verification techniques

    Surface evolution of the Anhur region on comet 67P/Churyumov-Gerasimenko from high-resolution OSIRIS images

    Get PDF
    Context. The southern hemisphere of comet 67P/Churyumov-Gerasimenko (67P) became observable by the Rosetta mission in March 2015, a fe months before cometary southern vernal equinox. The Anhur region in th southern part of the comet's larger lobe was found to be highly eroded resolution images of the Anhur region pre- and post-perihelion acquire by the OSIRIS imaging system on board the Rosetta mission. The Narro Angle Camera is particularly useful for studying the evolution in Anhu in terms of morphological changes and color variations. Methods Radiance factor images processed by the OSIRIS pipeline wer coregistered, reprojected onto the 3D shape model of the comet, an corrected for the illumination conditions. Results: We find number of morphological changes in the Anhur region that are related t formation of new scarps; removal of dust coatings; localized resurfacin in some areas, including boulders displacements; and vanishin structures, which implies localized mass loss that we estimate to b higher than 50 million kg. The strongest changes took place in an nearby the Anhur canyon-like structure, where significant dust cover wa removed, an entire structure vanished, and many boulders wer rearranged. All such changes are potentially associated with one of th most intense outbursts registered by Rosetta during its observations which occurred one day before perihelion passage. Moreover, in the nich at the foot of a new observed scarp, we also see evidence of water ic exposure that persisted for at least six months. The abundance of wate ice, evaluated from a linear mixing model, is relatively high (>20%) Our results confirm that the Anhur region is volatile-rich and probabl is the area on 67P with the most pristine exposures near perihelion. Th movies associated to Figs. 2, 7, 8, and 10 are available at http://https://www. anda.or

    Origin of the photoemission final-state effects in Bi2Sr2CaCu2O8 by very-low-energy electron diffraction

    Full text link
    Very-low-energy electron diffraction with a support of full-potential band calculations is used to achieve the energy positions, K// dispersions, lifetimes and Fourier compositions of the photoemission final states in Bi2Sr2CaCu2O8 at low excitation energies. Highly structured final states explain the dramatic matrix element effects in photoemission. Intense c(2x2) diffraction reveals a significant extrinsic contribution to the shadow Fermi surface. The final-state diffraction effects can be utilized to tune the photoemission experiment on specific valence states or Fermi surface replicas.Comment: 4 pages, 3 Postscript figures, submitted to Phys. Rev. Lett; major revision

    Structure optimization effects on the electronic properties of Bi2_2Sr2_2CaCu2_2O8_8

    Full text link
    We present detailed first-principles calculations for the normal state electronic properties of the high TC_C superconductor Bi2_2Sr2_2CaCu2_2O8_8, by means of the linearized augmented plane wave (LAPW) method within the framework of density functional theory (DFT). As a first step, the body centered tetragonal (BCT) cell has been adopted, and optimized regarding its volume, c/ac/a ratio and internal atomic positions by total energy and force minimizations. The full optimization of the BCT cell leads to small but visible changes in the topology of the Fermi surface, rounding the shape of CuO2_2 barrels, and causing both the BiO bands, responsible for the pockets near the \textit{\=M} 2D symmetry point, to dip below the Fermi level. We have then studied the influence of the distortions in the BiO plane observed in nature by means of a 2×2\sqrt{2}\times\sqrt{2} orthorhombic cell (AD-ORTH) with BbmbBbmb space group. Contrary to what has been observed for the Bi-2201 compound, we find that for Bi-2212 the distortion does not sensibly shift the BiO bands which retain their metallic character. As a severe test for the considered structures we present Raman-active phonon frequencies (q=0q = 0) and eigenvectors calculated within the frozen-phonon approximation. Focussing on the totally symmetric Ag_{g} modes, we observe that for a reliable attribution of the peaks observed in Raman experiments, both cc- and a-axis vibrations must be taken into account, the latter being activated by the in-plane orthorhombic distortion.Comment: 22 pages, 4 figure

    Pb0.4Bi1.6Sr2Ca1Cu2O8+xPb_{0.4}Bi_{1.6}Sr_{2}Ca_{1}Cu_{2}O_{8+x} and Oxygen Stoichiometry: Structure, Resistivity, Fermi Surface Topology and Normal State Properties

    Full text link
    Pb0.4Bi1.6Sr2CaCu2O8+xPb_{0.4}Bi_{1.6}Sr_2CaCu_2O_{8+x} (Bi(Pb)Bi(Pb)-2212) single crystal samples were studied using transmission electron microscopy (TEM), abab-plane (ρab\rho_{ab}) and cc-axis (ρc\rho_c) resistivity, and high resolution angle-resolved ultraviolet photoemission spectroscopy (ARUPS). TEM reveals that the modulation in the bb-axis for Pb(0.4)Pb(0.4)-doped Bi(Pb)Bi(Pb)-2212 is dominantly of PbPb-type that is not sensitive to the oxygen content of the system, and the system clearly shows a structure of orthorhombic symmetry. Oxygen annealed samples exhibit a much lower cc-axis resistivity and a resistivity minimum at 8013080-130K. He-annealed samples exhibit a much higher cc-axis resistivity and dρc/dT<0d\rho_c/dT<0 behavior below 300K. The Fermi surface (FS) of oxygen annealed Bi(Pb)Bi(Pb)-2212 mapped out by ARUPS has a pocket in the FS around the Mˉ\bar{M} point and exhibits orthorhombic symmetry. There are flat, parallel sections of the FS, about 60\% of the maximum possible along kx=kyk_x = k_y, and about 30\% along kx=kyk_x = - k_y. The wavevectors connecting the flat sections are about 0.72(π,π)0.72(\pi, \pi) along kx=kyk_x = k_y, and about 0.80(π,π)0.80(\pi, \pi) along kx=kyk_x = - k_y, rather than (π,π)(\pi,\pi). The symmetry of the near-Fermi-energy dispersing states in the normal state changes between oxygen-annealed and He-annealed samples.Comment: APS_REVTEX 3.0, 49 pages, including 11 figures, available upon request. Submitted to Phys. Rev. B

    First mineralogical maps of 4 Vesta

    Get PDF
    Before Dawn arrived at 4 Vesta only very low spatial resolution (~50 km) albedo and color maps were available from HST data. Also ground-based color and spectroscopic data were utilized as a first attempt to map Vesta’s mineralogical diversity [1-4]. The VIR spectrometer [5] onboard Dawn has ac-quired hyperspectral data while the FC camera [6] ob-tained multi-color data of the Vestan surface at very high spatial resolutions, allowing us to map complex geologic, morphologic units and features. We here re-port about the results obtained from a preliminary global mineralogical map of Vesta, based on data from the Survey orbit. This map is part of an iterative map-ping effort; the map is refined with each improvement in resolution
    corecore