5 research outputs found

    Biochemical and biophysical analyses of tight junction permeability made of claudin-16 and claudin-19 dimerization

    Get PDF
    The molecular nature of tight junction architecture and permeability is a long-standing mystery. Here, by comprehensive biochemical, biophysical, genetic, and electron microscopic analyses of claudin-16 and -19 interactions—two claudins that play key polygenic roles in fatal human renal disease, FHHNC—we found that 1) claudin-16 and -19 form a stable dimer through cis association of transmembrane domains 3 and 4; 2) mutations disrupting the claudin-16 and -19 cis interaction increase tight junction ultrastructural complexity but reduce tight junction permeability; and 3) no claudin hemichannel or heterotypic channel made of claudin-16 and -19 trans interaction can exist. These principles can be used to artificially alter tight junction permeabilities in various epithelia by manipulating selective claudin interactions. Our study also emphasizes the use of a novel recording approach based on scanning ion conductance microscopy to resolve tight junction permeabilities with submicrometer precision

    Capturing Rare Conductance in Epithelia with Potentiometric-Scanning Ion Conductance Microscopy

    No full text
    Tight junctions (TJs) are barrier forming structures of epithelia and can be described as tightly sealed intercellular spaces. Transport properties have been extensively studied for bicellular TJs (bTJs). Knowledge of the barrier functions of tricellular junctions (tTJs) are less well understood, due largely to a lack of proper techniques to locally measure discrete tTJ properties within a much larger area of epithelium. In this study, we use a nanoscale pipet to precisely locate tTJs within epithelia and measure the apparent local conductance of tTJs with a technique termed potentiometric scanning ion conductance microscopy (P-SICM). P-SICM shows the ability to differentiate transport through tTJs and bTJs, which was not possible with previous techniques and assays. We describe P-SICM investigations of both wild type and tricellulin overexpression Madin-Darby Canine Kidney (strain II, MDCKII) cells
    corecore