8 research outputs found

    Label-set impact on deep learning-based prostate segmentation on MRI

    No full text
    Abstract Background Prostate segmentation is an essential step in computer-aided detection and diagnosis systems for prostate cancer. Deep learning (DL)-based methods provide good performance for prostate gland and zones segmentation, but little is known about the impact of manual segmentation (that is, label) selection on their performance. In this work, we investigated these effects by obtaining two different expert label-sets for the PROSTATEx I challenge training dataset (n = 198) and using them, in addition to an in-house dataset (n = 233), to assess the effect on segmentation performance. The automatic segmentation method we used was nnU-Net. Results The selection of training/testing label-set had a significant (p < 0.001) impact on model performance. Furthermore, it was found that model performance was significantly (p < 0.001) higher when the model was trained and tested with the same label-set. Moreover, the results showed that agreement between automatic segmentations was significantly (p < 0.0001) higher than agreement between manual segmentations and that the models were able to outperform the human label-sets used to train them. Conclusions We investigated the impact of label-set selection on the performance of a DL-based prostate segmentation model. We found that the use of different sets of manual prostate gland and zone segmentations has a measurable impact on model performance. Nevertheless, DL-based segmentation appeared to have a greater inter-reader agreement than manual segmentation. More thought should be given to the label-set, with a focus on multicenter manual segmentation and agreement on common procedures. Critical relevance statement Label-set selection significantly impacts the performance of a deep learning-based prostate segmentation model. Models using different label-set showed higher agreement than manual segmentations. Key points • Label-set selection has a significant impact on the performance of automatic segmentation models. • Deep learning-based models demonstrated true learning rather than simply mimicking the label-set. • Automatic segmentation appears to have a greater inter-reader agreement than manual segmentation. Graphical Abstrac

    Artificial intelligence for prostate MRI: open datasets, available applications, and grand challenges

    No full text
    Artificial intelligence (AI) for prostate magnetic resonance imaging (MRI) is starting to play a clinical role for prostate cancer (PCa) patients. AI-assisted reading is feasible, allowing workflow reduction. A total of 3,369 multi-vendor prostate MRI cases are available in open datasets, acquired from 2003 to 2021 in Europe or USA at 3 T (n = 3,018; 89.6%) or 1.5 T (n = 296; 8.8%), 346 cases scanned with endorectal coil (10.3%), 3,023 (89.7%) with phased-array surface coils; 412 collected for anatomical segmentation tasks, 3,096 for PCa detection/classification; for 2,240 cases lesions delineation is available and 56 cases have matching histopathologic images; for 2,620 cases the PSA level is provided; the total size of all open datasets amounts to approximately 253 GB. Of note, quality of annotations provided per dataset highly differ and attention must be paid when using these datasets (e.g., data overlap). Seven grand challenges and commercial applications from eleven vendors are here considered. Few small studies provided prospective validation. More work is needed, in particular validation on large-scale multi-institutional, well-curated public datasets to test general applicability. Moreover, AI needs to be explored for clinical stages other than detection/characterization (e.g., follow-up, prognosis, interventions, and focal treatment)

    Automated reference tissue normalization of T2-weighted MR images of the prostate using object recognition

    No full text
    Objectives To develop and evaluate an automated method for prostate T2-weighted (T2W) image normalization using dual-reference (fat and muscle) tissue. Materials and methods Transverse T2W images from the publicly available PROMISE12 (N = 80) and PROSTATEx (N = 202) challenge datasets, and an in-house collected dataset (N = 60) were used. Aggregate channel features object detectors were trained to detect reference fat and muscle tissue regions, which were processed and utilized to normalize the 3D images by linear scaling. Mean prostate pseudo T2 values after normalization were compared to literature values. Inter-patient histogram intersections of voxel intensities in the prostate were compared between our approach, the original images, and other commonly used normalization methods. Healthy vs. malignant tissue classification performance was compared before and after normalization. Results The prostate pseudo T2 values of the three tested datasets (mean ± standard deviation = 78.49 ± 9.42, 79.69 ± 6.34 and 79.29 ± 6.30 ms) corresponded well to T2 values from literature (80 ± 34 ms). Our normalization approach resulted in significantly higher (p < 0.001) inter-patient histogram intersections (median = 0.746) than the original images (median = 0.417) and most other normalization methods. Healthy vs. malignant classification also improved significantly (p < 0.001) in peripheral (AUC 0.826 vs. 0.769) and transition (AUC 0.743 vs. 0.678) zones. Conclusion An automated dual-reference tissue normalization of T2W images could help improve the quantitative assessment of prostate cancer

    The Reproducibility of Deep Learning-Based Segmentation of the Prostate Gland and Zones on T2-Weighted MR Images

    No full text
    Volume of interest segmentation is an essential step in computer-aided detection and diagnosis (CAD) systems. Deep learning (DL)-based methods provide good performance for prostate segmentation, but little is known about the reproducibility of these methods. In this work, an in-house collected dataset from 244 patients was used to investigate the intra-patient reproducibility of 14 shape features for DL-based segmentation methods of the whole prostate gland (WP), peripheral zone (PZ), and the remaining prostate zones (non-PZ) on T2-weighted (T2W) magnetic resonance (MR) images compared to manual segmentations. The DL-based segmentation was performed using three different convolutional neural networks (CNNs): V-Net, nnU-Net-2D, and nnU-Net-3D. The two-way random, single score intra-class correlation coefficient (ICC) was used to measure the inter-scan reproducibility of each feature for each CNN and the manual segmentation. We found that the reproducibility of the investigated methods is comparable to manual for all CNNs (14/14 features), except for V-Net in PZ (7/14 features). The ICC score for segmentation volume was found to be 0.888, 0.607, 0.819, and 0.903 in PZ; 0.988, 0.967, 0.986, and 0.983 in non-PZ; 0.982, 0.975, 0.973, and 0.984 in WP for manual, V-Net, nnU-Net-2D, and nnU-Net-3D, respectively. The results of this work show the feasibility of embedding DL-based segmentation in CAD systems, based on multiple T2W MR scans of the prostate, which is an important step towards the clinical implementation

    High Resolution Microultrasound (ÎĽUS) Investigation of the Gastrointestinal (GI) Tract

    No full text
    High resolution, microultrasound (ÎĽUS) scanning of the gastrointestinal (GI) tract has potential as an important transmural imaging modality to aid in diagnosis. Operating at higher frequencies than conventional clinical ultrasound instruments, ÎĽUS is capable of providing scanned images of the GI tract with higher resolution. To investigate the use of ÎĽUS for this application, a phantom which is cost effective, within ethical guidelines and, most importantly, similar in histology to the human GI tract is necessary. Therefore, a phantom utilizing porcine small bowel tissue has been developed for custom assembled ÎĽUS scanning systems. Two such systems, a stepping scanner and a continuous sweep scanner were utilized to repeatedly scan regions of prepared samples of porcine small bowel tissue. The porcine small bowel tissue phantom was perfused with degassed phosphate buffer saline (dPBS) solution through a cannula inserted in its mesenteric vessel to simulate in vivo conditions and achieve better ÎĽUS mucosal characterization. The ÎĽUS system scans a transducer across the tissue phantom to acquire RF echo data, which is then processed using MATLAB. A B-scan reconstruction produces 2D images with relative echo strength mapped to a color map of the user's choice. The phantom developed also allows for modifications such as the insertion of fiducial markers to detect tissue change over time and simultaneous perfusion and scanning, providing a platform for more detailed research and investigation into ÎĽUS scanning of the GI tract

    A Quality Control System for Automated Prostate Segmentation on T2-Weighted MRI

    No full text
    Computer-aided detection and diagnosis (CAD) systems have the potential to improve robustness and efficiency compared to traditional radiological reading of magnetic resonance imaging (MRI). Fully automated segmentation of the prostate is a crucial step of CAD for prostate cancer, but visual inspection is still required to detect poorly segmented cases. The aim of this work was therefore to establish a fully automated quality control (QC) system for prostate segmentation based on T2-weighted MRI. Four different deep learning-based segmentation methods were used to segment the prostate for 585 patients. First order, shape and textural radiomics features were extracted from the segmented prostate masks. A reference quality score (QS) was calculated for each automated segmentation in comparison to a manual segmentation. A least absolute shrinkage and selection operator (LASSO) was trained and optimized on a randomly assigned training dataset (N = 1756, 439 cases from each segmentation method) to build a generalizable linear regression model based on the radiomics features that best estimated the reference QS. Subsequently, the model was used to estimate the QSs for an independent testing dataset (N = 584, 146 cases from each segmentation method). The mean ± standard deviation absolute error between the estimated and reference QSs was 5.47 ± 6.33 on a scale from 0 to 100. In addition, we found a strong correlation between the estimated and reference QSs (rho = 0.70). In conclusion, we developed an automated QC system that may be helpful for evaluating the quality of automated prostate segmentations

    Pseudo-T2 mapping for normalization of T2-weighted prostate MRI

    No full text
    Objective Signal intensity normalization is necessary to reduce heterogeneity in T2-weighted (T2W) magnetic resonance imaging (MRI) for quantitative analysis of multicenter data. AutoRef is an automated dual-reference tissue normalization method that normalizes transversal prostate T2W MRI by creating a pseudo-T2 map. The aim of this study was to evaluate the accuracy of pseudo-T2s and multicenter standardization performance for AutoRef with three pairs of reference tissues: fat/muscle (AutoRefF), femoral head/muscle (AutoRefFH) and pelvic bone/muscle (AutoRefPB). Materials and methods T2s measured by multi-echo spin echo (MESE) were compared to AutoRef pseudo-T2s in the whole prostate (WP) and zones (PZ and TZ/CZ/AFS) for seven asymptomatic volunteers with a paired Wilcoxon signed-rank test. AutoRef normalization was assessed on T2W images from a multicenter evaluation set of 1186 prostate cancer patients. Performance was measured by inter-patient histogram intersections of voxel intensities in the WP before and after normalization in a selected subset of 80 cases. Results AutoRefFH pseudo-T2s best approached MESE T2s in the volunteer study, with no significant difference shown (WP: p = 0.30, TZ/CZ/AFS: p = 0.22, PZ: p = 0.69). All three AutoRef versions increased inter-patient histogram intersections in the multicenter dataset, with median histogram intersections of 0.505 (original data), 0.738 (AutoRefFH), 0.739 (AutoRefF) and 0.726 (AutoRefPB). Discussion All AutoRef versions reduced variation in the multicenter data. AutoRefFH pseudo-T2s were closest to experimentally measured T2s
    corecore