149 research outputs found
The city dimension of the productivity growth puzzle: The relative role of structural change and within-sector slowdown
© The Author(s) (2018). Published by Oxford University Press. All rights reserved. Across OECD countries productivity growth has slowed, not just in recent years but over the past four decades: the so-called productivity puzzle. This paper examines the differing productivity growth paths of some 85 British cities since the beginning of the 1970s, and explores how far these paths reflect differences across cities in the pace and nature of structural change. We find that while northern cities led productivity growth over 1971-91 southern cities then led after 1991. However, at the same time, the rate of productivity growth slowed across almost all cities between these two periods. We find evidence of considerable structural convergence across cities and a general tendency for the degree of specialisation to fall. This then leads to a decomposition analysis which identifies the relative contribution of between-sector (structural change) and within-sector effects to city productivity growth. The analysis reveals that structural change - and especially the shift from manufacturing to services - has had a negative impact on productivity growth across all cities, but that within-sector productivity developments while positive and outweighing structural change effects, have also declined over the past 45 years, as well as varying across cities. These findings point to the need for further research on the causes of this slowdown in 'within-sector 'productivity growth and why those causes appear to differ from city to city. They also point to the need for a 'place-based' dimension to policies aimed at improving national productivity performance.This research for this article was undertaken as part of a project funded by the ESRC (ES/N006135/1) into Structural Transformation, Adaptability and City Economic Evolutions, as part of its Structural Transformations Programme. We are grateful to the ESRC for its support
Growing apart? Structural transformation and the uneven development of British cities
Structural change is now widely considered to be an important aspect of national economic growth. The issue is not only relevant at the macro-economic level, but also has a direct bearing on the growth of regions and cities. In this article, we examine the relationship between structural transformation and economic (output) growth across British cities over the last half-century. During this time, the British economy has gone through a series of extensive structural transformations, most notably a historical shift from an industrial to a post-industrial structure. But also within the dominant ‘post-industrial’ economy, some service activities have been growing at a faster rate and appear to be more dynamic than others. We show how the structural transformations in the national economy have played out quite differently across British cities, shaping to a considerable extent their divergent growth trajectories over the past five decades. At a broad level, it is possible to distinguish between a number of distinct growth groups of cities, and these also display significant differences in the extent and direction of structural change and reorientation. While differences in structural change have been important in shaping city growth paths, other ‘city-specific’ factors also appear to have exerted an influence, and thus require investigation. Despite the importance of structural change on the growth trajectories of British cities, the most comprehensive analysis was undertaken some 30 years ago (see Hausner, 1987). This article seeks to fill this lacuna in knowledge.This research was undertaken as part of a project funded by the ESRC (ES/N006135/1) into Structural Transformation, Adaptability and City Economic Evolutions, as part of its Urban Transformations Programme
Constituting monetary conservatives via the 'savings habit': New Labour and the British housing market bubble
The ongoing world credit crunch might well kill off the most recent bubble dynamics in the British housing market by driving prices systematically downwards from their 2007 peak. Nonetheless, the experience of that bubble still warrants analytical attention. The Labour Government might not have been responsible for consciously creating it, but it has certainly grasped the opportunities the bubble has provided in an attempt to enforce a process of agential change at the heart of the British economy. The key issue in this respect is the way in which the Government has challenged the legitimacy of passive welfare receipts in favour of establishing a welfare system based on incorporating the individual into an active asset-holding society. The housing market has taken on new political significance as a means for individuals first to acquire assets and then to accumulate wealth on the back of asset ownership. The ensuing integration of the housing market into an increasingly reconfigured welfare system has permeated into the politics of everyday life. It has been consistent with individuals remaking their political subjectivities in line with preferences for the type of conservative monetary policies that typically keep house price bubbles inflated
Influence of particle size in Pd-catalysed selective hydrogenation of 1,3-butadiene
Supported Pd nanoparticles are widely used as catalysts for the selective hydrogenation of alkynes and diolefins. They have a high activity, but it remains challenging to limit over–hydrogenation to alkanes. We varied the nanoparticle size of a Pd on carbon catalyst from 2 to 17 nm and studied its effect on the catalytic activity and selectivity in the selective hydrogenation of 1,3-butadiene in the presence of an excess of propylene. The butadiene hydrogenation activity per metal surface atom increased slightly with Pd particle size, from 17 s−1 to 34 s−1 at 25 °C for 2 nm to 17 nm particles. Contrarily, the propylene hydrogenation activity decreased with particle size: from 2.6 s−1 to 0.4 s−1 from 2 to 17 nm particles. Overall, a higher product selectivity was obtained with increasing particle size over the full butadiene conversion range. Altogether, this paper provides useful insight for the rational design of monometallic Pd-catalyst for selective hydrogenation
The role of venture capitalists in the regional innovation ecosystem : a comparison of networking patterns between private and publicly backed venture capital funds
This paper empirically examines the development of social networks among venture capitalists and other professionals of the regional innovation ecosystem. Using an online survey of venture capitalists, the article considers their networking behaviour, focusing particularly on the distinction between those employed by private and those employed by publicly backed venture capital funds, and on the composition and spatial search of their networks. It investigates whether the frequency of interaction between venture capitalists and other members of the innovation ecosystem is associated with the nature of the venture capital funds. The paper provides the first detailed investigation of the relationship between different types of venture capitalists and other players of the innovation ecosystem such as universities incubators, research institutes, and business support organisations. The results show that there are distinctive differences within the two seemingly similar professional groups (private and public venture capitalists), and public dependence of the venture capital fund is strongly and significantly associated with higher volumes of interactions. The more publicly dependent a fund is, the more it interacts with other players of the innovation system. This finding has important implications for both academics and practitioners and suggests that publicly backed funds have a wider role to play in mobilising the different players of the regional innovation ecosystem
Spring-Block Model Reveals Region-Like Structures
A mechanical spring-block model is used for realizing an objective space partition of settlements from a geographic territory in region-like structures. The method is based on the relaxation-dynamics of the spring-block system and reveals in a hierarchical manner region-like entities at different spatial scales. It takes into account in an elegant manner both the spatiality of the elements and the connectivity relations among them. Spatiality is taken into account by using the geographic coordinates of the settlements, and by detecting the neighbors with the help of a Delaunay triangulation. Connectivity between neighboring settlements are quantified using a Pearson-like correlation for the relative variation of a relevant socio-economic parameter (population size, GDP, tax payed per inhabitant, etc.). The method is implemented in an interactive JAVA application and it is applied with success for an artificially generated society and for the case of USA, Hungary and Transylvania
Silica as support and binder in bifunctional catalysts with ultralow Pt loadings for the hydroconversion of n-alkanes
Hydroconversion is a key step in the production of ultraclean fuels from renewable sources. This reaction is carried out using a bifunctional catalyst consisting of a base metal sulfide or a noble metal and a solid acid. Recently, we have shown that for Pt/Al2O3/ZSM-22 catalysts with low Pt loadings (≤0.01 wt%) it is advantageous – to both the activity as well as the isomer selectivity - to emplace the Pt on the zeolite crystallites instead of on the Al2O3 binder. When these low loadings of Pt were on the alumina binder, small clusters or even single atoms were present which were hard to reduce leading to inactivity of the catalysts. Herein, we explore the replacement of alumina by silica, and the performance of catalysts with ultralow Pt loadings on the conversion of longer-chain hydrocarbons. A series of Pt/SiO2/ZSM-22 catalysts with varying Pt weight loadings (0.001, 0.005, 0.01, 0.05, 0.1 and 0.5 wt%) and location (on silica or on ZSM-22) was prepared and characterized using ICP, NH3-TPD, HAADF-STEM and XAS. Their hydroconversion performance was evaluated using n-heptane and n-hexadecane as model feedstocks. As for the Pt/Al2O3/ZSM-22 catalysts systems, for Pt/SiO2/ZSM-22 catalysts with low Pt loadings (≤0.01 wt% for n-heptane conversion) it was beneficial to have the Pt nanoparticles on the ZSM-22 crystals. Hydroconversion of n-hexadecane over Pt/SiO2/ZSM-22 and Pt/Al2O3/ZSM-22 catalysts showed that for feedstocks with a higher molecular weight, higher Pt loadings (≥0.05 wt%) are required for sufficient catalytic performance. For the conversion of n-hexadecane it was beneficial to locate these higher amounts of Pt on the binder
Organoiridium complexes : anticancer agents and catalysts
Iridium is a relatively rare precious heavy metal, only slightly less dense than osmium. Researchers have long recognized the catalytic properties of square-planar Ir(I) complexes, such as Crabtree's hydrogenation catalyst, an organometallic complex with cyclooctadiene, phosphane, and pyridine ligands. More recently, chemists have developed half-sandwich pseudo-octahedral pentamethylcyclopentadienyl Ir(III) complexes containing diamine ligands that efficiently catalyze transfer hydrogenation reactions of ketones and aldehydes in water using H2 or formate as the hydrogen source. Although sometimes assumed to be chemically inert, the reactivity of low-spin 5d(6) Ir(III) centers is highly dependent on the set of ligands. Cp* complexes with strong σ-donor C^C-chelating ligands can even stabilize Ir(IV) and catalyze the oxidation of water. In comparison with well developed Ir catalysts, Ir-based pharmaceuticals are still in their infancy. In this Account, we review recent developments in organoiridium complexes as both catalysts and anticancer agents. Initial studies of anticancer activity with organoiridium complexes focused on square-planar Ir(I) complexes because of their structural and electronic similarity to Pt(II) anticancer complexes such as cisplatin. Recently, researchers have studied half-sandwich Ir(III) anticancer complexes. These complexes with the formula [(Cp(x))Ir(L^L')Z](0/n+) (with Cp* or extended Cp* and L^L' = chelated C^N or N^N ligands) have a much greater potency (nanomolar) toward a range of cancer cells (especially leukemia, colon cancer, breast cancer, prostate cancer, and melanoma) than cisplatin. Their mechanism of action may involve both an attack on DNA and a perturbation of the redox status of cells. Some of these complexes can form Ir(III)-hydride complexes using coenzyme NAD(P)H as a source of hydride to catalyze the generation of H2 or the reduction of quinones to semiquinones. Intriguingly, relatively unreactive organoiridium complexes containing an imine as a monodentate ligand have prooxidant activity, which appears to involve catalytic hydride transfer to oxygen and the generation of hydrogen peroxide in cells. In addition, researchers have designed inert Ir(III) complexes as potent kinase inhibitors. Octahedral cyclometalated Ir(III) complexes not only serve as cell imaging agents, but can also inhibit tumor necrosis factor α, promote DNA oxidation, generate singlet oxygen when photoactivated, and exhibit good anticancer activity. Although relatively unexplored, organoiridium chemistry offers unique features that researchers can exploit to generate novel diagnostic agents and drugs with new mechanisms of action
- …