385 research outputs found

    Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68

    Get PDF
    Murine gammaherpesvirus is a natural pathogen of wild rodents. In the laboratory it establishes an infection of epithelial cells and persists in B lymphocytes in a latent form. Inbred mice chronically infected with the virus develop a lymphoproliferative disease (LPD) similar to that seen in patients infected with Epstein-Barr virus. The frequency of LPD over a period of 3 years was 9% of all infected animals, with 50% of these displaying high grade lymphomas. The incidence of LPD was greatly increased when infected mice were treated with cyclosporin A. The majority of mice used in the experiments were BALB/c, although lymphomas were detected in mice on other genetic backgrounds, ie, CBA and B10Br. Lymphomas were associated with both lymphoid and nonlymphoid tissues (liver, lung, and kidney). In all cases of lymphomas studied thus far, there was a mixed B cell (B220+ve) and T cell (CD3+ve) phenotype. The B cells were light chain restricted, indicative of a clonal origin. Variable numbers of virus genome-positive cells were detected by in situ hybridization in and around the lymphomas. In contrast, no lytic antigen-positive cells were detected, indicating that genome-positive cells were either latently infected or undergoing an abortive infection. These observations suggest that murine gammaherpesvirus-infected mice may be an important model to study the pathogenesis of LPD associated with other gammaherpesviruses, such as Epstein-Barr virus

    Natural history of murine gamma-herpesvirus infection

    Get PDF
    Murine gamma-herpesvirus 68 (MHV-68) is a natural pathogen of small rodents and insectivores (mice, voles and shrews). The primary infection is characterized by virus replication in lung epithelial cells and the establishment of a latent infection in B lymphocytes. The virus is also observed to persist in lung epithelial cells, dendritic cells and macrophages. Splenomegaly is observed two weeks after infection, in which there is a CD4+ T-cell-mediated expansion of B and T cells in the spleen. At three weeks post-infection an infectious mononucleosis-like syndrome is observed involving a major expansion of Vbeta4+CD8+ T cells. Later in the course of persistent infection, ca. 10% of mice develop lymphoproliferative disease characterized as lymphomas of B-cell origin. The genome from MHV-68 strain g2.4 has been sequenced and contains ca. 73 genes, the majority of which are collinear and homologous to other gamma-herpesviruses. The genome includes cellular homologues for a complement-regulatory protein, Bcl-2, cyclin D and interleukin-8 receptor and a set of novel genes M1 to M4. The function of these genes in the context of latent infections, evasion of immune responses and virus-mediated pathologies is discussed. Both innate and adaptive immune responses play an active role in limiting virus infection. The absence of type I interferon (IFN) results in a lethal MHV-68 infection, emphasizing the central role of these cytokines at the initial stages of infection. In contrast, type II IFN is not essential for the recovery from infection in the lung, but a failure of type II IFN receptor signalling results in the atrophy of lymphoid tissue associated with virus persistence. Splenic atrophy appears to be the result of immunopathology, since in the absence of CD8+ T cells no pathology occurs. CD8+ T cells play a major role in recovery from the primary infection, and also in regulating latently infected cells expressing the M2 gene product. CD4+ T cells have a key role in surveillance against virus recurrences in the lung, in part mediated through 'help' in the genesis of neutralizing antibodies. In the absence of CD4+ T cells, virus-specific CD8+ T cells are able to control the primary infection in the respiratory tract, yet surprisingly the memory CD8+ T cells generated are unable to inhibit virus recurrences in the lung. This could be explained in part by the observations that this virus can downregulate major histocompatibility complex class I expression and also restrict inflammatory cell responses by producing a chemokine-binding protein (M3 gene product). MHV-68 provides an excellent model to explore methods for controlling gamma-herpesvirus infection through vaccination and chemotherapy. Vaccination with gp150 (a homologue of gp350 of Epstein-Barr virus) results in a reduction in splenomegaly and virus latency but does not block replication in the lung, nor the establishment of a latent infection. Even when lung virus infection is greatly reduced following the action of CD8+ T cells, induced via a prime-boost vaccination strategy, a latent infection is established. Potent antiviral compounds such as the nucleoside analogue 2'deoxy-5-ethyl-beta-4'-thiouridine, which disrupts virus replication in vivo, cannot inhibit the establishment of a latent infection. Clearly, devising strategies to interrupt the establishment of latent virus infections may well prove impossible with existing methods

    The Anti-interferon Activity of Conserved Viral dUTPase ORF54 is Essential for an Effective MHV-68 Infection

    Get PDF
    Gammaherpesviruses such as KSHV and EBV establish lifelong persistent infections through latency in lymphocytes. These viruses have evolved several strategies to counteract the various components of the innate and adaptive immune systems. We conducted an unbiased screen using the genetically and biologically related virus, MHV-68, to find viral ORFs involved in the inhibition of type I interferon signaling and identified a conserved viral dUTPase, ORF54. Here we define the contribution of ORF54 in type I interferon inhibition by ectopic expression and through the use of genetically modified MHV-68. ORF54 and an ORF54 lacking dUTPase enzymatic activity efficiently inhibit type I interferon signaling by inducing the degradation of the type I interferon receptor protein IFNAR1. Subsequently, we show in vitro that the lack of ORF54 causes a reduction in lytic replication in the presence of type I interferon signaling. Investigation of the physiological consequence of IFNAR1 degradation and importance of ORF54 during MHV-68 in vivo infection demonstrates that ORF54 has an even greater impact on persistent infection than on lytic replication. MHV-68 lacking ORF54 expression is unable to efficiently establish latent infection in lymphocytes, although it replicates relatively normally in lung tissues. However, infection of IFNAR−/− mice alleviates this phenotype, emphasizing the specific role of ORF54 in type I interferon inhibition. Infection of mice and cells by a recombinant MHV-68 virus harboring a site specific mutation in ORF54 rendering the dUTPase inactive demonstrates that dUTPase enzymatic activity is not required for anti-interferon function of ORF54. Moreover, we find that dUTPase activity is dispensable at all stages of MHV-68 infection analyzed. Overall, our data suggest that ORF54 has evolved anti-interferon activity in addition to its dUTPase enzymatic activity, and that it is actually the anti-interferon role that renders ORF54 critical for establishing an effective persistent infection of MHV-68

    Murine Gammaherpesvirus-68 Inhibits Antigen Presentation by Dendritic Cells

    Get PDF
    Dendritic cells (DCs) play a central role in initiating adaptive immunity. Murine gammaherpesvirus-68 (MHV-68), like many persistent viruses, infects DCs during normal host colonization. It therefore provides a means to understanding what host and viral genes contribute to this aspect of pathogenesis. The infected DC phenotype is likely to depend on whether viral gene expression is lytic or latent and whether antigen presentation is maintained. For MHV-68, neither parameter has been well defined. Here we show that MHV-68 infects immature but not mature bone marrow-derived DCs. Infection was predominantly latent and these DCs showed no obvious defect in antigen presentation. Lytically infected DCs were very different. These down-regulated CD86 and MHC class I expression and presented a viral epitope poorly to CD8+ T cells. Antigen presentation improved markedly when the MHV-68 K3 gene was disrupted, indicating that K3 fulfils an important function in infected DCs. MHV-68 infects only a small fraction of the DCs present in lymphoid tissue, so K3 expression is unlikely to compromise significantly global CD8+ T cell priming. Instead it probably helps to maintain lytic gene expression in DCs once CD8+ T cell priming has occurred

    Gammaherpesvirus-Driven Plasma Cell Differentiation Regulates Virus Reactivation from Latently Infected B Lymphocytes

    Get PDF
    Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68) gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency) account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners) that do not directly participate in virus replication, but rather facilitate virus reactivation by manipulating the cellular milieu to provide a reactivation competent environment

    Viral Bcl-2-Mediated Evasion of Autophagy Aids Chronic Infection of γHerpesvirus 68

    Get PDF
    γ-herpesviruses (γHVs) have developed an interaction with their hosts wherein they establish a life-long persistent infection and are associated with the onset of various malignancies. One critical virulence factor involved in the persistency of murine γ-herpesvirus 68 (γHV68) is the viral homolog of the Bcl-2 protein (vBcl-2), which has been implicated to counteract both host apoptotic responses and autophagy pathway. However, the relative significance of the two activities of vBcl-2 in viral persistent infection has yet to be elucidated. Here, by characterizing a series of loss-of-function mutants of vBcl-2, we have distinguished the vBcl-2-mediated antagonism of autophagy from the vBcl-2-mediated inhibition of apoptosis in vitro and in vivo. A mutant γHV68 virus lacking the anti-autophagic activity of vBcl-2 demonstrates an impaired ability to maintain chronic infections in mice, whereas a mutant virus lacking the anti-apoptotic activity of vBcl-2 establishes chronic infections as efficiently as the wild-type virus but displays a compromised ability for ex vivo reactivation. Thus, the vBcl-2-mediated antagonism of host autophagy constitutes a novel mechanism by which γHVs confer persistent infections, further underscoring the importance of autophagy as a critical host determinant in the in vivo latency of γ-herpesviruses

    RTA Promoter Demethylation and Histone Acetylation Regulation of Murine Gammaherpesvirus 68 Reactivation

    Get PDF
    Gammaherpesviruses have a common biological characteristic, latency and lytic replication. The balance between these two phases in murine gammaherpesvirus 68 (MHV-68) is controlled by the replication and transcription activator (RTA) gene. In this report, we investigated the effect of DNA demethylation and histone acetylation on MHV-68 replication. We showed that distinctive methylation patterns were associated with MHV-68 at the RTA promoter during latency or lytic replication. Treatment of MHV-68 latently-infected S11E cells with a DNA methyltransferases (DNMTs) inhibitor 5-azacytidine (5-AzaC), only weakly reactivated MHV-68, despite resulted in demethylation of the viral RTA promoter. In contrast, treatment with a histone deacetylase (HDAC) inhibitor trichostatin A (TSA) strongly reactivated MHV-68 from latency, and this was associated with significant change in histone H3 and H4 acetylation levels at the RTA promoter. We further showed that HDAC3 was recruited to the RTA promoter and inhibited RTA transcription during viral latency. However, TSA treatment caused rapid removal of HDAC3 and also induced passive demethylation at the RTA promoter. In vivo, we found that the RTA promoter was hypomethylated during lytic infection in the lung and that methylation level increased with virus latent infection in the spleen. Collectively, our data showed that histone acetylation, but not DNA demethylation, is sufficient for effective reactivation of MHV-68 from latency in S11E cells

    Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3

    Get PDF
    We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star-black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc-3 yr-1 and the neutron star-black hole merger rate to be between 7.8 and 140 Gpc-3 yr-1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc-3 yr-1 at a fiducial redshift (z=0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to (1+z)κ with κ=2.9-1.8+1.7 for z≲1. Using both binary neutron star and neutron star-black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from 1.2-0.2+0.1 to 2.0-0.3+0.3M⊙. We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of 8.3-0.5+0.3 and 27.9-1.8+1.9M⊙. While we continue to find that the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately 60M⊙, which would indicate the presence of a upper mass gap. Observed black hole spins are small, with half of spin magnitudes below χi≈0.25. While the majority of spins are preferentially aligned with the orbital angular momentum, we infer evidence of antialigned spins among the binary population. We observe an increase in spin magnitude for systems with more unequal-mass ratio. We also observe evidence of misalignment of spins relative to the orbital angular momentum

    Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.Comment: 27 pages, 3 figure

    Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data

    Get PDF
    corecore