56 research outputs found

    Enhanced blue photoluminescence realized by copper diffusion doping of ZnO thin films

    Get PDF
    ZnO thin films with blue photoluminescence (PL) have been fabricated through Cu diffusion doping. A CuOx-ZnO mixture, and Cu/ZnO double layer, films were prepared on amorphous SiOx/Si substrates by pulsed laser deposition (PLD), and electron beam (e-beam) deposition, respectively. After sequential oxygen annealing, CuOx-ZnO mixture films exhibited green emission centered at 523 nm. However, Cu/ZnO double layer films differed in producing a blue emission centered at 480 nm. Detailed analysis identified that this blue shift in the emission center resulted from increased blue emissions attributed to Cu dopants in the film by e-beam deposition. Luminescence intensity was increased to 6 cd/m2 for a sample annealed at 700 deg;C. Color points were close to the locus of points following the line of a black-body-radiator on the CIE 1931 XY chromaticity diagram. The present results show that Cu-doped ZnO has strong potential as a cost effective phosphor for use in down converting LEDs. © 2013 Optical Society of America.1

    Low-temperature synthesis of LiFePO4 nanocrystals by solvothermal route

    Get PDF
    LiFePO4 nanocrystals were synthesized at a very low temperature of 170°C using carbon nanoparticles by a solvothermal process in a polyol medium, namely diethylene glycol without any heat treatment as a post procedure. The powder X-ray diffraction pattern of the LiFePO4 was indexed well to a pure orthorhombic system of olivine structure (space group: Pnma) with no undesirable impurities. The LiFePO4 nanocrystals synthesized at low temperature exhibited mono-dispersed and carbon-mixed plate-type LiFePO4 nanoparticles with average length, width, and thickness of approximately 100 to 300 nm, 100 to 200 nm, and 50 nm, respectively. It also appeared to reveal considerably enhanced electrochemical properties when compared to those of pristine LiFePO4. These observed results clearly indicate the effect of carbon in improving the reactivity and synthesis of LiFePO4 nanoparticles at a significantly lower temperature

    Splicing-independent loading of TREX on nascent RNA is required for efficient expression of dual-strand piRNA clusters in Drosophila

    Get PDF
    The conserved THO/TREX (transcription/export) complex is critical for pre-mRNA processing and mRNA nuclear export. In metazoa, TREX is loaded on nascent RNA transcribed by RNA polymerase II in a splicing-dependent fashion; however, how TREX functions is poorly understood. Here we show that Thoc5 and other TREX components are essential for the biogenesis of piRNA, a distinct class of small noncoding RNAs that control expression of transposable elements (TEs) in the Drosophila germline. Mutations in TREX lead to defects in piRNA biogenesis, resulting in derepression of multiple TE families, gametogenesis defects, and sterility. TREX components are enriched on piRNA precursors transcribed from dual-strand piRNA clusters and colocalize in distinct nuclear foci that overlap with sites of piRNA transcription. The localization of TREX in nuclear foci and its loading on piRNA precursor transcripts depend on Cutoff, a protein associated with chromatin of piRNA clusters. Finally, we show that TREX is required for accumulation of nascent piRNA precursors. Our study reveals a novel splicing-independent mechanism for TREX loading on nascent RNA and its importance in piRNA biogenesis

    Drosophila TRPN( = NOMPC) Channel Localizes to the Distal End of Mechanosensory Cilia

    Get PDF
    BACKGROUND: A TRPN channel protein is essential for sensory transduction in insect mechanosensory neurons and in vertebrate hair cells. The Drosophila TRPN homolog, NOMPC, is required to generate mechanoreceptor potentials and currents in tactile bristles. NOMPC is also required, together with a TRPV channel, for transduction by chordotonal neurons of the fly's antennal ear, but the TRPN or TRPV channels have distinct roles in transduction and in regulating active antennal mechanics. The evidence suggests that NOMPC is a primary mechanotransducer channel, but its subcellular location-key for understanding its exact role in transduction-has not yet been established. METHODOLOGY/PRINCIPAL FINDINGS: Here, by immunostaining, we locate NOMPC at the tips of mechanosensory cilia in both external and chordotonal sensory neurons, as predicted for a mechanotransducer channel. In chordotonal neurons, the TRPN and TRPV channels are respectively segregated into distal and proximal ciliary zones. This zonal separation is demarcated by and requires the ciliary dilation, an intraciliary assembly of intraflagellar transport (IFT) proteins. CONCLUSIONS: Our results provide a strong evidence for NOMPC as a primary transduction channel in Drosophila mechansensory organs. The data also reveals a structural basis for the model of auditory chordotonal transduction in which the TRPN and TRPV channels play sequential roles in generating and amplifying the receptor potential, but have opposing roles in regulating active ciliary motility

    Chalcone-Based Colorimetric Chemosensor for Detecting Ni<sup>2+</sup>

    No full text
    The first chalcone-based colorimetric chemosensor DPP (sodium (E)-2,4-dichloro-6-(3-oxo-3-(pyridine-2-yl)prop-1-en-1-yl)phenolate) was synthesized for detecting Ni2+ in near-perfect water. The synthesis of DPP was validated by using 1H, 13C NMR and ESI-MS. DPP selectively sensed Ni2+ through the color variation from yellow to purple. Detection limit of DPP for Ni2+ was calculated to be 0.36 μM (3σ/slope), which is below the standard (1.2 μM) set by the United States Environmental Protection Agency (EPA).The binding ratio of DPP to Ni2+ was determined as a 1:1 by using a Job plot and ESI-mass. The association constant of DPP and Ni2+ was calculated as 1.06 × 104 M−1 by the non-linear fitting analysis. In real samples, the sensing application of DPP for Ni2+ was successfully performed. DPP-coated paper-supported strips could also be used for detecting Ni2+. The binding mechanism of DPP to Ni2+ was proposed by ESI-MS, Job plot, UV-vis, FT-IR spectroscopy, and DFT calculations

    Improved capacity spectrum method with inelastic displacement ratio considering higher mode effects

    No full text
    Progressive collapse, which is referred to as the collapse of the entire building under local damages, is a common failure mode happened by earthquakes. The collapse process highly depends on the whole structural system. Since, asymmetry of the building plan leads to the local damage concentration; it may intensify the progressive collapse mechanism of asymmetric buildings. In this research the progressive collapse of regular and irregular 6-story RC ordinary moment resisting frame buildings are studied in the presence of the earthquake loads. Collapse process and collapse propagation are investigated using nonlinear time history analyses (NLTHA) in buildings with 5%, 15% and 25% mass asymmetry with respect to the number of collapsed hinges and story drifts criteria. Results show that increasing the value of mass eccentricity makes the asymmetric buildings become unstable earlier and in the early stages with lower number of the collapsed hinges. So, with increasing the mass eccentricity in building, instability and collapse of the entire building occurs earlier, with lower potential of the progressive collapse. It is also demonstrated that with increasing the mass asymmetry the decreasing trend of the number of collapsed beam and column hinges is approximately similar to the decreasing trend in the average story drifts of the mass centers and stiff edges. So, as an alternative to a much difficult-to-calculate local response parameter of the number of collapsed hinges, the story drift, as a global response parameter, measures the potential of progressive collapse more easily.open

    A Dinitrophenol-Based Colorimetric Chemosensor for Sequential Cu<sup>2+</sup> and S<sup>2−</sup> Detection

    No full text
    A dinitrophenol-based colorimetric chemosensor sequentially sensing Cu2+ and S2−, HDHT ((E)-2-(2-(2-hydroxy-3,5-dinitrobenzylidene)hydrazineyl)-N,N,N-trimethyl-2-oxoethan-1-aminium), was designed and synthesized. The HDHT selectively detected Cu2+ through a color change of yellow to colorless. The calculated detection limit of the HDHT for Cu2+ was 6.4 × 10−2 μM. In the interference test, the HDHT was not considerably inhibited by various metal ions in its detection of Cu2+. The chelation ratio of the HDHT to Cu2+ was determined as 1:1 by using a Job plot and ESI-MS experiment. In addition, the HDHT–Cu2+ complex showed that its color selectively returned to yellow only in the presence of S2−. The detection limit of the HDHT–Cu2+ complex for S2− was calculated to be 1.2 × 10−1 μM. In the inhibition experiment for S2−, the HDHT–Cu2+ complex did not significantly interfere with other anions. In the real water-sample test, the detection performance of the HDHT for Cu2+ and S2− was successfully examined. The detection features of HDHT for Cu2+ and the HDHT–Cu2+ for S2− were suggested by the Job plot, UV–Vis, ESI-MS, FT-IR spectroscopy, and DFT calculations

    Urinary and Blood MicroRNA-126 and -770 are Potential Noninvasive Biomarker Candidates for Diabetic Nephropathy: a Meta-Analysis

    No full text
    Background/Aims: Diabetic nephropathy (DN), a major diabetic microvascular complication, has a long and growing list of biomarkers, including microRNA biomarkers, which have not been consistent across preclinical and clinical studies. This meta-analysis aims to identify significant blood- and urine-incident microRNAs as diagnostic/prognostic biomarker candidates for DN. Methods: PubMed, Web of Science, and Cochrane Library were searched from their earliest records through 12th Dec 2016. Relevant publications for the meta-analysis included (1) human participants; (2) microRNAs in blood and urine; (3) DN studies; and (4) English language. Four reviewers, including two physicians, independently and blindly extracted published data regarding microRNA profiles in blood and/or urine from subjects with diabetic nephropathy. A random-effect model was used to pool the data. Statistical associations between diabetic nephropathy and urinary or blood microRNA expression levels were assessed. Results: Fourteen out of 327 studies (n=2,747 patients) were selected. Blood or urinary microRNA expression data of diabetic nephropathy were pooled for this analysis. The hsa-miR-126 family was significantly (OR: 0.57; 95% CI: 0.44-0.74; p-value &#x3c; 0.0001) downregulated in blood from patients with diabetic kidney disease, while its urinary level was upregulated (OR: 2931.12; 95% CI: 9.96-862623.21; p-value = 0.0059). The hsa-miR-770 family microRNA were significantly (OR: 10.24; 95% CI: 2.37-44.25; p-value = 0.0018) upregulated in both blood and urine from patients with diabetic nephropathy. Conclusions: Our meta-analysis suggests that hsa-miR-126 and hsa-miR-770 family microRNA may have important diagnostic and pathogenetic implications for DN, which warrants further systematic clinical studies
    corecore