926 research outputs found

    Reactive lymphoid hyperplasia of the liver

    Get PDF

    Epithelioid hemangioendothelioma of the liver

    Get PDF

    Generation of subspecies level-specific microbial diagnostic microarrays using genes amplified from subtractive suppression hybridization as microarray probes

    Get PDF
    The generation of microarray probes with specificity below the species level is an ongoing challenge, not least because the high-throughput detection of microorganisms would be an efficient means of identifying environmentally relevant microbes. Here, we describe how suppression subtractive hybridization (SSH) can be applied to the production of microarray probes that are useful for microbial differentiation at the subspecies level. SSH was used to initially isolate unique genomic sequences of nine Salmonella strains, and these were validated in quadruplicate by microarray analysis. The results obtained indicate that a large group of genes subtracted by SSH could serve together, as one probe, for detecting a microbial subspecies. Similarly, the whole microbial genome (not subjected to SSH) can be used as a species-specific probe. The detailed methods described herein could be used and adapted for the estimation of any cultivable bacteria from different environments

    H2 pressure swing adsorption for IGCC power plant and techno-economic analysis of integrating PSA to IGCC with carbon capture

    Get PDF
    Carbon capture and sequestration technologies emerge as the effectual remediation processes to reduce CO2 emissions from coal power plants. Integrated gasification combined cycle (IGCC) is a representative technology for utilizing coal as feedstock and is consequently playing a more important role to cover the global energy demand. The IGCC produces H2-rich mixture at high pressures (30-35 bar) after capturing CO2. It is reported that the high purity H2 recovered from the IGCC process can be economically supplied to a hydrogen turbine or fuel cell. And a PSA process is a strong candidate to produce high purity H2 from the IGCC effluent gas. However, due to higher operating pressure than the present H2 PSA processes, reducing the operating costs and efficiency has emerged as one of the key issues. Please click Additional Files below to see the full abstract

    mtDNAmanager: a Web-based tool for the management and quality analysis of mitochondrial DNA control-region sequences

    Get PDF
    BACKGROUND: For the past few years, scientific controversy has surrounded the large number of errors in forensic and literature mitochondrial DNA (mtDNA) data. However, recent research has shown that using mtDNA phylogeny and referring to known mtDNA haplotypes can be useful for checking the quality of sequence data. RESULTS: We developed a Web-based bioinformatics resource "mtDNAmanager" that offers a convenient interface supporting the management and quality analysis of mtDNA sequence data. The mtDNAmanager performs computations on mtDNA control-region sequences to estimate the most-probable mtDNA haplogroups and retrieves similar sequences from a selected database. By the phased designation of the most-probable haplogroups (both expected and estimated haplogroups), mtDNAmanager enables users to systematically detect errors whilst allowing for confirmation of the presence of clear key diagnostic mutations and accompanying mutations. The query tools of mtDNAmanager also facilitate database screening with two options of "match" and "include the queried nucleotide polymorphism". In addition, mtDNAmanager provides Web interfaces for users to manage and analyse their own data in batch mode. CONCLUSION: The mtDNAmanager will provide systematic routines for mtDNA sequence data management and analysis via easily accessible Web interfaces, and thus should be very useful for population, medical and forensic studies that employ mtDNA analysis. mtDNAmanager can be accessed at http://mtmanager.yonsei.ac.krope
    corecore