20,019 research outputs found
Kondo and charge fluctuation resistivity due to Anderson impurities in graphene
Motivated by experiments on ion irradiated graphene, we compute the
resistivity of graphene with dilute impurities. In the local moment regime we
employ the perturbation theory up to third order in the exchange coupling to
determine the behavior at high temperatures within the Kondo model. Resistivity
due to charge fluctuations is obtained within the mean field approach on the
Anderson impurity model. Due to the linear spectrum of the graphene the Kondo
behavior is shown to depend on the gate voltage applied. The location of the
impurity on the graphene sheet is an important variable determining its effect
on the Kondo scale and resistivity. Our results show that for chemical
potential nearby the node the charge fluctuations is responsible for the
observed temperature dependence of resistivity while away from the node the
spin fluctuations take over. Quantitative agreement with experimental data is
achieved if the energy of the impurity level varies linearly with the chemical
potential.Comment: 17 pages, 15 figures, published versio
Non-equilibrium Transport in the Anderson model of a biased Quantum Dot: Scattering Bethe Ansatz Phenomenology
We derive the transport properties of a quantum dot subject to a source-drain
bias voltage at zero temperature and magnetic field. Using the Scattering Bethe
Anstaz, a generalization of the traditional Thermodynamic Bethe Ansatz to open
systems out of equilibrium, we derive exact results for the quantum dot
occupation out of equilibrium and, by introducing phenomenological spin- and
charge-fluctuation distribution functions in the computation of the current,
obtain the differential conductance for large U/\Gamma. The Hamiltonian to
describe the quantum dot system is the Anderson impurity Hamiltonian and the
current and dot occupation as a function of voltage are obtained numerically.
We also vary the gate voltage and study the transition from the mixed valence
to the Kondo regime in the presence of a non-equilibrium current. We conclude
with the difficulty we encounter in this model and possible way to solve them
without resorting to a phenomenological method.Comment: 20 pages, 20 figures, published versio
Design data collection with Skylab/EREP microwave instrument S-193
There are no author-identified significant results in this report
Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality
Simulations demonstrate that undoped yttrium iron garnet (YIG) seedlayers cause reduced Faraday rotation in silicon-on-insulator (SOI) waveguides with Ce-doped YIG claddings. Undoped seedlayers are required for the crystallization of the magneto-optical Ce:YIG claddings, but they diminish the interaction of the Ce:YIG with the guided modes. Therefore new magneto-optical garnets, terbium iron garnet (TIG) and bismuth-doped TIG (Bi:TIG), are introduced that can be integrated directly on Si and quartz substrates without seedlayers. The Faraday rotations of TIG and Bi:TIG films at 1550nm were measured to be +500 and -500°/cm, respectively. Simulations show that these new garnets have the potential to significantly mitigate the negative impact of the seedlayers under Ce:YIG claddings. The successful growth of TIG and Bi:TIG on low-index fused quartz inspired novel garnet-core waveguide isolator designs, simulated using finite difference time domain (FDTD) methods. These designs use alternating segments of positive and negative Faraday rotation for push-pull quasi phase matching in order to overcome birefringence in waveguides with rectangular cross-sections
Lanczos exact diagonalization study of field-induced phase transition for Ising and Heisenberg antiferromagnets
Using an exact diagonalization treatment of Ising and Heisenberg model
Hamiltonians, we study field-induced phase transition for two-dimensional
antiferromagnets. For the system of Ising antiferromagnet the predicted
field-induced phase transition is of first order, while for the system of
Heisenberg antiferromagnet it is the second-order transition. We find from the
exact diagonalization calculations that the second-order phase transition
(metamagnetism) occurs through a spin-flop process as an intermediate step.Comment: 4 pages, 4 figure
The Dendritic magnetic avalanches in carbon-free MgB thin films with and without a deposited Au layer
From the magneto optics images (MOI), the dendritic magnetic avalanche is
known to appear dominantly for thin films of the newly discovered MgB. To
clarify the origin of this phenomenon, we studied in detail the MOI of
carbon-free MgB thin films with and without a deposited gold layer. The MOI
indicated carbon contamination was not the main source of the avalanche. The
MOI clearly showed that the deposition of metallic gold deposition on top of a
MgB thin film improved its thermal stability and suppressed the sudden
appearance of the dendritic flux avalanche. This is consistent with the
previous observation of flux noise in the magnetization.Comment: 9 pages, 4 figeure
Precise Complexity of the Core in Dichotomous and Additive Hedonic Games
Hedonic games provide a general model of coalition formation, in which a set
of agents is partitioned into coalitions, with each agent having preferences
over which other players are in her coalition. We prove that with additively
separable preferences, it is -complete to decide whether a core- or
strict-core-stable partition exists, extending a result of Woeginger (2013).
Our result holds even if valuations are symmetric and non-zero only for a
constant number of other agents. We also establish -completeness of
deciding non-emptiness of the strict core for hedonic games with dichotomous
preferences. Such results establish that the core is much less tractable than
solution concepts such as individual stability.Comment: ADT-2017, 15 pages in LNCS styl
- …