15,561 research outputs found

    20 K superconductivity in heavily electron doped surface layer of FeSe bulk crystal

    Full text link
    A superconducting transition temperature Tc as high as 100 K was recently discovered in 1 monolayer (1ML) FeSe grown on SrTiO3 (STO). The discovery immediately ignited efforts to identify the mechanism for the dramatically enhanced Tc from its bulk value of 7 K. Currently, there are two main views on the origin of the enhanced Tc; in the first view, the enhancement comes from an interfacial effect while in the other it is from excess electrons with strong correlation strength. The issue is controversial and there are evidences that support each view. Finding the origin of the Tc enhancement could be the key to achieving even higher Tc and to identifying the microscopic mechanism for the superconductivity in iron-based materials. Here, we report the observation of 20 K superconductivity in the electron doped surface layer of FeSe. The electronic state of the surface layer possesses all the key spectroscopic aspects of the 1ML FeSe on STO. Without any interface effect, the surface layer state is found to have a moderate Tc of 20 K with a smaller gap opening of 4 meV. Our results clearly show that excess electrons with strong correlation strength alone cannot induce the maximum Tc, which in turn strongly suggests need for an interfacial effect to reach the enhanced Tc found in 1ML FeSe/STO.Comment: 5 pages, 4 figure

    Pairing Symmetry in the Anisotropic Fermi Superfluid under p-wave Feshbach Resonance

    Full text link
    The anisotropic Fermi superfluid of ultra-cold Fermi atoms under the p-wave Feshbach resonance is studied theoretically. The pairing symmetry of the ground state is determined by the strength of the atom-atom magnetic dipole interaction. It is kzk_z for a strong dipole interaction; while it becomes kziβkyk_z - i \beta k_y, up to a rotation about z, for a weak one (Here β\beta < 1 is a numerical coefficient). By changing the external magnetic field or the atomic gas density, a phase transition between these two states can be driven. We discuss how the pairing symmetry of the ground state can be determined in the time-of-flight experiments.Comment: 12 pages, 7 figure

    Hiding Single Photons With Spread Spectrum Technology

    Full text link
    We describe a proof-of-principal experiment demonstrating the use of spread spectrum technology at the single photon level. We show how single photons with a prescribed temporal shape, in the presence of interfering noise, may be hidden and recovered.Comment: 4 pages, 5 figures
    corecore