283 research outputs found

    All-Solution-Processed InGaO 3

    Get PDF
    We fabricated the crystallized InGaZnO thin films by sol-gel process and high-temperature annealing at 900°C. Prior to the deposition of the InGaZnO, ZnO buffer layers were also coated by sol-gel process, which was followed by thermal annealing. After the synthesis and annealing of the InGaZnO, the InGaZnO thin film on the ZnO buffer layer with preferred orientation showed periodic diffraction patterns in the X-ray diffraction, resulting in a superlattice structure. This film consisted of nanosized grains with two phases of InGaO3(ZnO)1 and InGaO3(ZnO)2 in InGaZnO polycrystal. On the other hand, the use of no ZnO buffer layer and randomly oriented ZnO buffer induced the absence of the InGaZnO crystal related patterns. This indicated that the ZnO buffer with high c-axis preferred orientation reduced the critical temperature for the crystallization of the layered InGaZnO. The InGaZnO thin films formed with nanosized grains of two-phase InGaO3(ZnO)m superlattice showed considerably low thermal conductivity (1.14 Wm−1 K−1 at 325 K) due to the phonon scattering from grain boundaries as well as interfaces in the superlattice grain

    Increased interleukin-17 production via a phosphoinositide 3-kinase/Akt and nuclear factor κB-dependent pathway in patients with rheumatoid arthritis

    Get PDF
    Inflammatory mediators have been recognized as being important in the pathogenesis of rheumatoid arthritis (RA). Interleukin (IL)-17 is an important regulator of immune and inflammatory responses, including the induction of proinflammatory cytokines and osteoclastic bone resorption. Evidence for the expression and proinflammatory activity of IL-17 has been demonstrated in RA synovium and in animal models of RA. Although some cytokines (IL-15 and IL-23) have been reported to regulate IL-17 production, the intracellular signaling pathways that regulate IL-17 production remain unknown. In the present study, we investigated the role of the phosphoinositide 3-kinase (PI3K)/Akt pathway in the regulation of IL-17 production in RA. Peripheral blood mononuclear cells (PBMC) from patients with RA (n = 24) were separated, then stimulated with various agents including anti-CD3, anti-CD28, phytohemagglutinin (PHA) and several inflammatory cytokines and chemokines. IL-17 levels were determined by sandwich enzyme-linked immunosorbent assay and reverse transcription–polymerase chain reaction. The production of IL-17 was significantly increased in cells treated with anti-CD3 antibody with or without anti-CD28 and PHA (P < 0.05). Among tested cytokines and chemokines, IL-15, monocyte chemoattractant protein-1 and IL-6 upregulated IL-17 production (P < 0.05), whereas tumor necrosis factor-α, IL-1β, IL-18 or transforming growth factor-β did not. IL-17 was also detected in the PBMC of patients with osteoarthritis, but their expression levels were much lower than those of RA PBMC. Anti-CD3 antibody activated the PI3K/Akt pathway; activation of this pathway resulted in a pronounced augmentation of nuclear factor κB (NF-κB) DNA-binding activity. IL-17 production by activated RA PBMC is completely or partly blocked in the presence of the NF-κB inhibitor pyrrolidine dithiocarbamate and the PI3K/Akt inhibitor wortmannin and LY294002, respectively. However, inhibition of activator protein-1 and extracellular signal-regulated kinase 1/2 did not affect IL-17 production. These results suggest that signal transduction pathways dependent on PI3K/Akt and NF-κB are involved in the overproduction of the key inflammatory cytokine IL-17 in RA

    Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity

    Get PDF
    The red-crowned crane (Grus japonensis) is an endangered, large-bodied crane native to East Asia. It is a traditional symbol of longevity and its long lifespan has been confirmed both in captivity and in the wild. Lifespan in birds is known to be positively correlated with body size and negatively correlated with metabolic rate, though the genetic mechanisms for the red-crowned crane&apos;s long lifespan have not previously been investigated. Using whole genome sequencing and comparative evolutionary analyses against the grey-crowned crane and other avian genomes, including the long-lived common ostrich, we identified red-crowned crane candidate genes with known associations with longevity. Among these are positively selected genes in metabolism and immunity pathways (NDUFA5, NDUFA8, NUDT12, SOD3, CTH, RPA1, PHAX, HNMT, HS2ST1, PPCDC, PSTK CD8B, GP9, IL-9R, and PTPRC). Our analyses provide genetic evidence for low metabolic rate and longevity, accompanied by possible convergent adaptation signatures among distantly related large and long-lived birds. Finally, we identified low genetic diversity in the red-crowned crane, consistent with its listing as an endangered species, and this genome should provide a useful genetic resource for future conservation studies of this rare and iconic species

    Genetic polymorphism of merozoite surface protein-1 and merozoite surface protein-2 in Plasmodium falciparum field isolates from Myanmar

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Merozoite surface protein-1 (MSP-1) and MSP-2 of <it>Plasmodium falciparum </it>are potential vaccine candidate antigens for malaria vaccine development. However, extensive genetic polymorphism of the antigens in field isolates of <it>P. falciparum </it>represents a major obstacle for the development of an effective vaccine. In this study, genetic polymorphism of MSP-1 and MSP-2 among <it>P. falciparum </it>field isolates from Myanmar was analysed.</p> <p>Methods</p> <p>A total of 63 <it>P. falciparum </it>infected blood samples, which were collected from patients attending a regional hospital in Mandalay Division, Myanmar, were used in this study. The regions flanking the highly polymorphic characters, block 2 for MSP-1 and block 3 for MSP-2, were genotyped by allele-specific nested-PCR to analyse the population diversity of the parasite. Sequence analysis of the polymorphic regions of MSP-1 and MSP-2 was also conducted to identify allelic diversity in the parasite population.</p> <p>Results</p> <p>Diverse allelic polymorphism of MSP-1 and MSP-2 was identified in <it>P. falciparum </it>isolates from Myanmar and most of the infections were determined to be mixed infections. Sequence analysis of MSP-1 block 2 revealed that 14 different alleles for MSP-1 (5 for K1 type and 9 for MAD20 type) were identified. For MSP-2 block 3, a total of 22 alleles (7 for FC27 type and 15 for 3D7 type) were identified.</p> <p>Conclusion</p> <p>Extensive genetic polymorphism with diverse allele types was identified in MSP-1 and MSP-2 in <it>P. falciparum </it>field isolates from Myanmar. A high level of mixed infections was also observed, as was a high degree of multiplicity of infection.</p

    Diversity of Cladosporium (Cladosporiales, Cladosporiaceae) species in marine environments and report on five new species

    Get PDF
    Cladosporium species are cosmopolitan fungi, characterized by olivaceous or dark colonies with coronate conidiogenous loci and conidial hila with a central convex dome surrounded by a raised periclinal rim. Cladosporium species have also been discovered in marine environments. Although many studies have been performed on the application of marine originated Cladosporium species, taxonomic studies on these species are scarce. We isolated Cladosporium species from three under-studied habitats (sediment, seawater, and seaweed) in two districts including an intertidal zone in the Republic of Korea and the open sea in the Western Pacific Ocean. Based on multigenetic marker analyses (for the internal transcribed spacer, actin, and translation elongation factor 1), we identified fourteen species, of which five were found to represent new species. These five species were C. lagenariiforme sp. nov., C. maltirimosum sp. nov., C. marinum sp. nov. in the C. cladosporioides species complex, C. snafimbriatum sp. nov. in the C. herbarum species complex, and C. marinisedimentum sp. nov. in the C. sphaerospermum species complex. Morphological characteristics of the new species and aspects of differences with the already known species are described herein together with molecular data

    Whole genome sequence and analysis of the Marwari horse breed and its genetic origin

    Get PDF
    Background: The horse (Equus ferus caballus) is one of the earliest domesticated species and has played an important role in the development of human societies over the past 5,000 years. In this study, we characterized the genome of the Marwari horse, a rare breed with unique phenotypic characteristics, including inwardly turned ear tips. It is thought to have originated from the crossbreeding of local Indian ponies with Arabian horses beginning in the 12th century. Results: We generated 101 Gb (similar to 30 x coverage) of whole genome sequences from a Marwari horse using the Illumina HiSeq2000 sequencer. The sequences were mapped to the horse reference genome at a mapping rate of similar to 98% and with similar to 95% of the genome having at least 10 x coverage. A total of 5.9 million single nucleotide variations, 0.6 million small insertions or deletions, and 2,569 copy number variation blocks were identified. We confirmed a strong Arabian and Mongolian component in the Marwari genome. Novel variants from the Marwari sequences were annotated, and were found to be enriched in olfactory functions. Additionally, we suggest a potential functional genetic variant in the TSHZ1 gene (p.Ala344&gt;Val) associated with the inward-turning ear tip shape of the Marwari horses. Conclusions: Here, we present an analysis of the Marwari horse genome. This is the first genomic data for an Asian breed, and is an invaluable resource for future studies of genetic variation associated with phenotypes and diseases in horses.open1

    TLR2-induced astrocyte MMP9 activation compromises the blood brain barrier and exacerbates intracerebral hemorrhage in animal models

    Get PDF
    Background: The innate immune response plays an important role in the pathogenesis of intracerebral hemorrhage (ICH). Recent studies have shown that Toll-like receptor 2 (TLR2) is involved in the innate immune response in various neurological diseases, yet neither its role in ICH nor the mechanisms by which it functions have yet been elucidated. We examined these in this study using a collagenase-induced mouse ICH model with TLR2 knock-out (KO) mice. Results: TLR2 expression was upregulated in the ipsilateral hemorrhagic tissues of the collagenase-injected mice. Brain injury volume and neurological deficits following ICH were reduced in TLR2 KO mice compared to wild-type (WT) control mice. Heterologous blood-transfer experiments show that TLR2 signaling in brain-resident cells, but not leukocytes, contributes to the injury. In our study to elucidate underlying mechanisms, we found that damage to blood-brain barrier (BBB) integrity following ICH was attenuated in TLR2 KO mice compared to WT mice, which may be due to reduced matrix metalloproteinase-9 (MMP9) activation in astrocytes. The reduced BBB damage accompanies decreased neutrophil infiltration and proinflammatory gene expression in the injured brain parenchyma, which may account for the attenuated brain damage in TLR2 KO mice after ICH. Conclusions: TLR2 plays a detrimental role in ICH-induced brain damage by activating MMP9 in astrocytes, compromising BBB, and enhancing neutrophils infiltration and proinflammatory gene expression. © 2015 Min et al.; licensee BioMed Central.1

    Levodopa-carbidopa-entacapone overdose presenting as altered mental status, xanthoderma, and yellowish sclera

    Get PDF
    Levodopa-carbidopa-entacapone is a single combination drug consisting of levodopa (aromatic amino acid), carbidopa (dopa-decarboxylase inhibitor), and entacapone (catechol-O-methyltransferase inhibitor). The Food and Drug Administration approved levodopa-carbidopa-entacapone in 2003, as treatment for idiopathic Parkinson’s disease in patients experiencing signs and symptoms of wearing-off. Although various adverse drug reactions of levodopa-carbidopa-entacapone have been recorded, there has been no reported case of levodopa-carbidopa-entacapone overdose. We report the first case of signs and symptoms of an overdose of levodopa-carbidopa-entacapone (levodopa: 3000 mg; carbidopa: 750 mg; entacapone: 6000 mg) in a suicide attempt, presenting as altered mentality, xanthoderma, and yellowish sclera without hyperbilirubinemia

    AP-1/IRF-3 Targeted Anti-Inflammatory Activity of Andrographolide Isolated from Andrographis paniculata

    Get PDF
    Andrographolide (AG) is an abundant component of plants of the genus Andrographis and has a number of beneficial properties including neuroprotective, anticancer, anti-inflammatory, and antidiabetic effects. Despite numerous pharmacological studies, the precise mechanism of AG is still ambiguous. Thus, in the present study, we investigated the molecular mechanisms of AG and its target proteins as they pertain to anti-inflammatory responses. AG suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2), as well as the mRNA abundance of inducible NO synthase (iNOS), tumor necrosis factor-alpha (TNF-α), cyclooxygenase (COX)-2, and interferon-beta (IFN-β) in a dose-dependent manner in both lipopolysaccharide- (LPS-) activated RAW264.7 cells and peritoneal macrophages. AG also substantially ameliorated the symptoms of LPS-induced hepatitis and EtOH/HCl-induced gastritis in mice. Based on the results of luciferase reporter gene assays, kinase assays, and measurement of nuclear levels of transcription factors, the anti-inflammatory effects of AG were found to be clearly mediated by inhibition of both (1) extracellular signal-regulated kinase (ERK)/activator protein (AP)-1 and (2) IκB kinase ε (IKKε)/interferon regulatory factor (IRF)-3 pathways. In conclusion, we detected a novel molecular signaling pathway by which AG can suppress inflammatory responses. Thus, AG is a promising anti-inflammatory drug with two pharmacological targets
    corecore