2,100 research outputs found

    Interpretable Housing for Freedom of the Body: The Next Generation of Flexible Homes

    Get PDF
    If we have gone through the first generation of housing design that pursued functional optimization, ergonomics, and circulation efficiency during the last century, now we are living in the second generation where more advanced goals, such as universal design, ubiquitous design, sustainable design, and environment-friendly design, are emphasized. Al-though this second generation of design focuses upon the wellness of humans in accordance with environment, it still has the attitude that a more precisely designed home can guarantee a better life. What lacks in this approach is the free-dom of the body; it needs to make its own choice as to how to use a space. Thus, it is suggested in this paper that what is important in designing a home is to provide alternatives in daily lives so as to make a full exploration of a given space. These alternatives can be made by offering residents an interpretable space where they can figure out space usages and routs in a constantly changing context. Two spatial devices are discussed in depths as a way to realize this interpretable house: room-to-room enfilade and ring spatial structure. By investigating some existing house plans, it is illustrated how they can guarantee the freedom of the body, and thus alternatives for the flexible domestic life

    Real-Time Detection of Nitric Oxide Release in Live Cells Utilizing Fluorinated Xerogel-Derived Nitric Oxide Sensor

    Get PDF
    Nitric oxide (NO) is an important signaling molecule that regulates a diverse range of physiological and cellular processes in many tissues. Therefore, the accurate detection of physiological NO concentration is crucial to the understanding of NO signaling and its biological role. There has been growing interest in the development of electrochemical sensors for direct and real-time monitoring of NO. As the direct electrooxidation of NO requires a relatively high working potential, further surface modification with permselective membranes is required to achieve the desired selectivity for NO via size exclusion or electrostatic repulsion. Here we reported a planar-type NO sensor with a fluorinated xerogel-derived gas permeable membrane for real-time detection of NO release in live cells. First, we evaluated the biocompatibility of xerogel-derived NO permeable membranes modified with fluorinated functional groups by growing RAW 264.7 macrophages on them. And we performed the AFM measurements to examine the morphology of RAW 264.7 macrophages on xerogel membrane. Finally, we successfully detected NO release in RAW 264.7 macrophages, using a planar-type xerogel-derived NO sensor. As a result, fluorinated xerogel-derived membrane could be utilized as both NO permeable and cell-adhesive membranes. Besides, planar-type xerogel-based NO sensors can be easily applied to the cellular sensing system, with a simple coating procedure

    Evaluation of conditional treatment effects of adjuvant treatments on patients with synovial sarcoma using Bayesian subgroup analysis

    Get PDF
    Background The impact of adjuvant chemotherapy or radiation therapy on the survival of patients with synovial sarcoma (SS), which is a rare soft-tissue sarcoma, remains controversial. Bayesian statistical approaches and propensity score matching can be employed to infer treatment effects using observational data. Thus, this study aimed to identify the individual treatment effects of adjuvant therapies on the overall survival of SS patients and recognize subgroups of patients who can benefit from specific treatments using Bayesian subgroup analyses. Methods We analyzed data from patients with SS obtained from the surveillance, epidemiology, and end results (SEER) public database. These data were collected between 1984 and 2014. The treatment effects of chemotherapy and radiation therapy on overall survival were evaluated using propensity score matching. Subgroups that could benefit from radiation therapy or chemotherapy were identified using Bayesian subgroup analyses. Results Based on a stratified Kaplan-Meier curve, chemotherapy exhibited a positive average causal effect on survival in patients with SS, whereas radiation therapy did not. The optimal subgroup for chemotherapy includes the following covariates: older than 20 years, male, large tumor (longest diameter > 5 cm), advanced stage (SEER 3), extremity location, and spindle cell type. The optimal subgroup for radiation therapy includes the following covariates: older than 20 years, male, large tumor (longest diameter > 5 cm), early stage (SEER 1), extremity location, and biphasic type. Conclusion In this study, we identified high-risk patients whose variables include age (age > 20 years), gender, tumor size, tumor location, and poor prognosis without adjuvant treatment. Radiation therapy should be considered in the early stages for high-risk patients with biphasic types. Conversely, chemotherapy should be considered for late-stage high-risk SS patients with spindle cell types

    The 5'-end transitional CpGs between the CpG islands and retroelements are hypomethylated in association with loss of heterozygosity in gastric cancers

    Get PDF
    BACKGROUND: A loss of heterozygosity (LOH) represents a unilateral chromosomal loss that reduces the dose of highly repetitive Alu, L1, and LTR retroelements. The aim of this study was to determine if the LOH events can affect the spread of retroelement methylation in the 5'-end transitional area between the CpG islands and their nearest retroelements. METHODS: The 5'-transitional area of all human genes (22,297) was measured according to the nearest retroelements to the transcription start sites. For 50 gastric cancer specimens, the level of LOH events on eight cancer-associated chromosomes was estimated using the microsatellite markers, and the 5'-transitional CpGs of 20 selected genes were examined by methylation analysis using the bisulfite-modified DNA. RESULTS: The extent of the transitional area was significantly shorter with the nearest Alu elements than with the nearest L1 and LTR elements, as well as in the extragenic regions containing a higher density of retroelements than in the intragenic regions. The CpG islands neighbouring a high density of Alu elements were consistently hypomethylated in both normal and tumor tissues. The 5'-transitional methylated CpG sites bordered by a low density of Alu elements or the L1 and LTR elements were hypomethylated more frequently in the high-level LOH cases than in the low-level LOH cases. CONCLUSION: The 5'-transitional methylated CpG sites not completely protected by the Alu elements were hypomethylated in association with LOH events in gastric cancers. This suggests that an irreversible unbalanced decrease in the genomic dose reduces the spread of L1 methylation in the 5'-end regions of genes

    Breakdown of the interlayer coherence in twisted bilayer graphene

    Full text link
    Coherent motion of the electrons in the Bloch states is one of the fundamental concepts of the charge conduction in solid state physics. In layered materials, however, such a condition often breaks down for the interlayer conduction, when the interlayer coupling is significantly reduced by e.g. large interlayer separation. We report that complete suppression of coherent conduction is realized even in an atomic length scale of layer separation in twisted bilayer graphene. The interlayer resistivity of twisted bilayer graphene is much higher than the c-axis resistivity of Bernal-stacked graphite, and exhibits strong dependence on temperature as well as on external electric fields. These results suggest that the graphene layers are significantly decoupled by rotation and incoherent conduction is a main transport channel between the layers of twisted bilayer graphene.Comment: 5 pages, 3 figure

    Potential role and mechanism of IFN-gamma inducible protein-10 on receptor activator of nuclear factor kappa-B ligand (RANKL) expression in rheumatoid arthritis

    Get PDF
    Introduction IFN-gamma inducible protein-10 (CXCL10), a member of the CXC chemokine family, and its receptor CXCR3 contribute to the recruitment of T cells from the blood stream into the inflamed joints and have a crucial role in perpetuating inflammation in rheumatoid arthritis (RA) synovial joints. Recently we showed the role of CXCL10 on receptor activator of nuclear factor kappa-B ligand (RANKL) expression in an animal model of RA and suggested the contribution to osteoclastogenesis. We tested the effects of CXCL10 on the expression of RANKL in RA synoviocytes and T cells, and we investigated which subunit of CXCR3 contributes to RANKL expression by CXCL10. Methods Synoviocytes derived from RA patients were kept in culture for 24 hours in the presence or absence of TNF-α. CXCL10 expression was measured by reverse transcriptase polymerase chain reaction (RT-PCR) of cultured synoviocytes. Expression of RANKL was measured by RT-PCR and western blot in cultured synoviocytes with or without CXCL10 and also measured in Jurkat/Hut 78 T cells and CD4+ T cells in the presence of CXCL10 or dexamethasone. CXCL10 induced RANKL expression in Jurkat T cells was tested upon the pertussis toxin (PTX), an inhibitor of Gi subunit of G protein coupled receptor (GPCR). The synthetic siRNA for Gαi2 was used to knock down gene expression of respective proteins. Results CXCL10 expression in RA synoviocytes was increased by TNF-α. CXCL10 slightly increased RANKL expression in RA synoviocytes, but markedly increased RANKL expression in Jurkat/Hut 78 T cell or CD4+ T cell. CXCL10 augmented the expression of RANKL by 62.6%, and PTX inhibited both basal level of RANKL (from 37.4 ± 16.0 to 18.9 ± 13.0%) and CXCL10-induced RANKL expression in Jurkat T cells (from 100% to 48.6 ± 27.3%). Knock down of Gαi2 by siRNA transfection, which suppressed the basal level of RANKL (from 61.8 ± 17.9% to 31.1 ± 15.9%) and CXCL10-induced RANKL expression (from 100% to 53.1 ± 27.1%) in Jurkat T cells, is consistent with PTX, which inhibited RANKL expression. Conclusions CXCL10 increased RANKL expression in CD4+ T cells and it was mediated by Gαi subunits of CXCR3. These results indicate that CXCL10 may have a potential role in osteoclastogenesis of RA synovial tissue and subsequent joint erosion
    corecore