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Abstract

Nitric oxide (NO) is an important signaling molecule that regulates a diverse range
of physiological and cellular processes in many tissues. Therefore, the accurate de‐
tection of physiological NO concentration is crucial to the understanding of NO sig‐
naling and its biological role. There has been growing interest in the development
of electrochemical sensors for direct and real-time monitoring of NO. As the direct
electrooxidation of NO requires a relatively high working potential, further surface
modification with permselective membranes is required to achieve the desired se‐
lectivity for NO via size exclusion or electrostatic repulsion. Here we reported a pla‐
nar-type NO sensor with a fluorinated xerogel-derived gas permeable membrane
for real-time detection of NO release in live cells. First, we evaluated the biocompat‐
ibility of xerogel-derived NO permeable membranes modified with fluorinated
functional groups by growing RAW 264.7 macrophages on them. And we per‐
formed the AFM measurements to examine the morphology of RAW 264.7 macro‐
phages on xerogel membrane. Finally, we successfully detected NO release in RAW
264.7 macrophages, using a planar-type xerogel-derived NO sensor. As a result, flu‐
orinated xerogel-derived membrane could be utilized as both NO permeable and
cell-adhesive membranes. Besides, planar-type xerogel-based NO sensors can be
easily applied to the cellular sensing system, with a simple coating procedure.
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1. Introduction

Nitric oxide (NO) is an important mediator that regulates a diverse range of physiological and
cellular processes in many tissues [1,2]. In particular, it plays an important role in a variety of
biological processes including neurotransmission, immune defense, regulation of cell death
(apoptosis), and cell motility [3–5]. The accurate detection of physiological NO concentration
is crucial to the understanding of NO signaling and its biological role. However, it is difficult
to accurately measure NO levels in vivo because NO is present at nanomolar concentrations
in the body and has a half-life of 2–6 s [6]. Additionally, it is highly reactive with numerous
endogenous species including free radicals, peroxides, and oxygen [7,8]. Consequently, most
methods for NO detection are indirect including spectroscopic approaches such as the Griess
assay for nitrite, detection of nitrate and nitrite with reductase enzymes, and detection of
methemoglobin after NO reaction with oxyhemoglobin [9–11]. Unfortunately, these methods
often fail to accurately reflect the dynamics of NO in vivo and in real time [12]. Direct meas‐
urement strategies are therefore necessary for examining biological process and diseases
related to NO in biological conditions, in particular the action of endogenously produced NO.

There has been growing interest in the development of electrochemical sensors for direct and
real-time monitoring of NO. Electrochemical methods provide simplicity, fast response times,
good sensitivity, high selectivity, and long-term calibration stability [8,12], and thus have
significant advantages over other techniques such as electron paramagnetic resonance (EPR)
[13–15], chemiluminescence [16–18], and fluorescence [19,20]. As the direct electrooxidation
of NO requires a relatively high working potential, further surface modification with perm‐
selective membranes is required to achieve the desired selectivity for NO via size exclusion or
electrostatic repulsion. Many polymeric materials have been reported as NO-permeable and
permselective membranes, including polycarbazole [21], collodion [22], Nafion [23], cellulose
acetate [24], poly(tetrafluoroethylene) [25], polydimethylsiloxane (silicone rubber) [26], and
multilayer hybrids of these polymers. However, the utility of these polymeric membranes for
improving sensor performance in vivo or in cells remains limited [8,12].

The sol-gel process is an inorganic polymerization process for the fabrication of materials
under mild conditions [27] through the hydrolysis and condensation of suitable alkoxysilane
precursors [28]. These sol-gel derived materials (xerogels) have emerged as a class of materials
suitable for a wide range of sensing applications [8]. Organically modified xerogels are
particularly advantageous for gas sensing applications [29]. The porous inorganic network
provides an open and rigid structure for rapid diffusion of gaseous molecules, while the
organic groups impart hydrophobicity to the membrane for preventing leakage of the internal
electrolyte [30,31]. A previous study reported that sol-gel derived electrochemical sensors
showed good sensitivity and selectivity for NO detection in vitro [21,30]. These studies were
mainly focused on improving sensor performance such as sensitivity and selectivity, in
particular optimization of permselective membrane in vitro.

An amperometric NO sensor for cellular biosensing is significantly affected by the distance
between the sensor and the NO-producing cells because NO is rapidly diluted by diffusion
under cell-culture conditions [32,33]. However, it is difficult to adjust the exact distance
between the needle or disk type sensors and cells without special apparatus [34]. Therefore, it
would be better to grow the cells directly on the electrode surface with a NO permeable
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membrane. Our previous study reported good sensitivity and selectivity of electrochemical
NO sensors with a xerogel membrane in standard solution, but it was mainly focused on
membrane optimization including composition, permeability, and contact angle to improve
the sensor performance [8,12].

In this study, we developed a planar-type NO sensor with a fluorinated xerogel-derived gas
permeable membrane for real-time detection of NO release in live cells including RAW 264.7
macrophages. First, we evaluated the cell viability of RAW 264.7 macrophages on xerogel-
derived NO permeable membranes. And we performed the AFM measurement to examine
the morphology of RAW 264.7 macrophages on xerogel membrane. Finally, we performed the
real-time electrochemical detection of NO release in RAW 264.7 macrophages by lipopolysac‐
charide (LPS) stimulation utilizing a planar-type NO sensor.

2. Methods used

2.1. Materials

Methyltrimethoxysilane (MTMOS) was purchased from Fluka (Buchs, Switzerland). (Hepta‐
decafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane (17FTMS) was purchased from Gelest
(Tullytown, PA, USA). Silver and dielectric insulator pastes were purchased from Acheson
(Tokyo, Japan) and Jujo (Tokyo, Japan), respectively. Chloroplatinic acid hexahydrate, and
lead(II) acetate trihydrate were purchased from Sigma (St. Louis, MO, USA). Nitric oxide (NO;
99.5%), carbon monoxide (CO; 99.5%), and nitrogen (N2) gases were obtained from Dong-A
Scientific (Seoul, South Korea). Other solvents and chemicals were analytical-reagent grade
and were used as received. All aqueous solutions were prepared using distilled water of 18.3
MΩ cm resistivity.

2.2. Preparation and biocompatibility test of fluorinated xerogel membrane

A silane solution was prepared by dissolving 18 μL of MTMOS and 4.5 μL of 17FTMS in 727.5
μL of ethanol, as previously reported [12]. The solution was mixed with 160 μL of water,
followed by 10μL of HCl (0.5 M) for 1 h. The ensuing solution was deposited on a culture dish
and cured for 1 day under ambient conditions.

RAW 264.7 macrophages were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
media with 10% fetal bovine serum (FBS), 1% penicillin, and 1% streptomycin. The cells were
then maintained in a humidified atmosphere that contained 5% CO2 at 37 °C and the medium
was changed every second day. Cells were detached by washing and scraping. After washing,
cells were resuspended in fresh medium and used for subsequent experiments.

To evaluate the biocompatibility of xerogel membrane, we performed by 3-(4,5-dimethylthia‐
zol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (Sigma, St.Louis, MO, USA) using
RAW 264.7 macrophages. The MTT assay, which is one of the most versatile and popular
methods to measure cell viability, involves the conversion of water soluble MTT to an insoluble
formazan. The amount of formazan in the MTT assay reflects the total mitochondrial enzymatic
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activity of live cells. Cells (1 × 104 cells per well) were seeded in a xerogel membrane coated
96-well plate and incubated for 24, 48, and 72 h. After MTT was added to each group, the cells
were incubated for 4 h. The viability was then measured with a microplate reader (Bio-Tek,
Winooski, VT, USA) at a test wavelength of 540 nm. The optical density (OD) was calculated
as the difference between the reference wavelength and the test wavelength.

2.3. AFM measurement of cells on fluorinated xerogel membrane

RAW 264.7 macrophages on xerogel membrane were characterized using atomic force
microscopy (AFM). RAW 264.7 macrophages were washed twice with filtered phosphate
buffered saline (PBS, 0.1 M, pH 7.4) and fixed for 20 min in 2.5% glutaraldehyde in PBS at room
temperature and 5 ml PBS was added to xerogel-modified culture dish containing fixed cells.
Contact mode AFM images were obtained using a NANOS N8 NEOS (Bruker, Herzogenrath,
Germany), equipped with a 42.5 μm XY/4 μm Z scanner and a Zeiss optical microscope
(Epiplan 500x). The AFM was placed on an active vibration isolation table (TS-150, S.I.S.,
Herzogenrath, Germany), inside a passive vibration isolation table (Pucotech, Seoul, Korea)
to eliminate external noise. Data acquisition and image processing were performed with SPIP
(Scanning Probe Image Processor Version 4.1, Image Metrology, Denmark).

Silicon cantilevers with the reflective side coated with gold (Budget Sensor, Bulgaria) were
used for the measurements under liquid conditions. The AFM probe tips were stabilized with
PBS for at least 10 min prior to scanning. Fixed RAW macrophages were scanned in PBS
solution at a resolution of 512 × 512 pixels, at a scan speed of 0.5 line/s.

2.4. Fabrication of planar-type NO sensor

The planar-type NO sensor with three-configuration (i.e., working, reference, and counter
electrodes) was prepared using a screen-printing technique, as shown in Figure 1(A). Briefly,
a polyester substrate (500 μm thick; 3 M, St. Paul, MN, USA) was thermally treated at 130 °C
for 3 h before screen-printing. The silver (for reference electrode and electrical connections),
carbon (for working and counter electrodes), and dielectric insulator patterns were sequen‐
tially screen-printed onto the thermally pretreated polyester substrate using a LS-150 semi-
automated screen printer (Newlong Seimitsu Kogyo; Tokyo, Japan). Each pattern was cured
at 130 °C for 13 min. The carbon working electrode (7.1 mm2) was platinized in 3% chloropla‐
tinic acid hexahydrate and 0.03% lead(II) acetate trihydrate (w/w in water) by cycling the
potential from +0.6 to −0.35 V (vs. Ag/AgCl) at a scan rate of 20 mV/s using a CH Instruments
760B bipotentiostat (Austin, TX, USA). The Ag/AgCl reference electrode was prepared by
oxidative treatment using 0.3 M FeCl3 solution on the dried silver paste for 15 minutes. A silane
solution for xerogel membrane was deposited onto platinized carbon working electrode and
allowed to cure for 24 h under ambient conditions.

2.5. Evaluation of planar-type NO sensors

To evaluate the analytical performance of the planar-type NO sensor, amperometric meas‐
urements were performed using a CH Instruments 760B bipotentiostat or a portable MicroStat
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(Dropsens, Spain). The sensor was prepolarized for 100 min and tested in DMEM solution
under ambient conditions with constant stirring. Currents were recorded at an applied
potential of +0.8 V (vs. Ag/AgCl). For in vitro calibration, a NO standard solution (1.9 mM) was
prepared by purging DMEM solution with N2 gas for 30 min to remove any oxygen, followed
by purging with NO (99.5%) for 30 min. The CO solution (0.9 mM) was similarly prepared by
consecutively purging DMEM with N2 for 30 min and CO (99.5%) for another 30 min. (Caution!
The NO and CO purging process must be carried out in a fume hood since NO and CO gases are
toxic!) The solutions of NO and interfering species (nitrite, ascorbic acid, uric acid, acetami‐
nophen, dopamine, hydrogen peroxide, and carbon monoxide) were freshly prepared every
second day and stored at 4 °C.

The selectivity of the xerogel-modified sensors for NO in the presence of interfering species
was also evaluated using the separate solution method [12], for which the amperometric
selectivity coefficients (logK NO , j

amp ) were calculated using the following equation:
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where ∆INO and ∆Ij are the measured current values for the target analyte (NO) and interfering
species (j = nitrite, ascorbic acid, uric acid, acetaminophen, dopamine, hydrogen peroxide, and
carbon monoxide), respectively. The concentration of each interfering substance (cj) was
selected to be 1 μM, the same concentration of NO (cNO).

2.6. Real-time detection of NO release in live cells

RAW 264.7 macrophages (1×104 cells/electrode) were grown on top of the electrode surface
which was covered with sol–gel-derived membrane. Stimulation of RAW macrophages with
LPS (1 μg/ml) was performed after stabilizing the background current for 2∼3 h at 37 °C. The
experimental scheme is shown in Figure 1(B).

Figure 1. Schematic of (A) screen-printed electrode and (B) experimental design for real-time detection of nitric oxide
release in live cells utilizing fluorinated xerogel-derived nitric oxide sensor.
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3. Results and discussion

3.1. Cytotoxicity assessment of fluorinated xerogel membrane

In general, amorphous, hydrophobic fluoropolymers are highly permeable to many gaseous
species including oxygen, nitric oxide, carbon dioxide, ammonia, and volatile organic com‐
pounds [12,35]. Indeed, a microporous poly(tetrafluoroethylene) (PTFE) film has been
extensively employed to improve a Clark-type oxygen sensor as a gas-permeable membrane
[36,37]. The PTFE membrane effectively prevented the biofouling at the interface between the
sensor surface and the biological samples (e.g., blood), while enabling high permeation and
rapid diffusion of oxygen [36]. However, the fabrication of such sensors remains complicated.
The PTFE film must be stretched across the electrode and fixed to the sensor. This process is
often irreproducible, impacting both the thickness of the gas-permeable membrane and the
sensor’s response to oxygen [29,36].

In this study, we employed a fluorinated xerogel gas-permeable membrane to take advantage
of both the versatility of sol–gel chemistry and high and fast gas permselectivity like PTFE.
Our previous study reported good sensitivity and selectivity of electrochemical NO sensors
with a xerogel membrane in standard solution [8,12]. In addition, we had preliminarily
evaluated the cell viability, adhesion, and growth of cells on xerogel-derived NO permeable
membrane, comparing with that of other cell-adhesive matrices such as collagen and poly L-
lysine [34].

Here, we performed an MTT assay to reconfirm the cytotoxicity of fluorinated xerogel-derived
NO permeable membrane, prior to real-time detection of NO release in live cells. RAW 264.7
macrophages were incubated on fluorinated xerogel-derived NO permeable membrane and
collagen for 24, 48, and 72 h. Similar to preliminary result, the viability of RAW 264.7 cells
exposed to xerogel membrane for 24 h was 102.64 ± 3.52%. This result showed that fluorinated
xerogel-derived NO permeable membrane was not cytotoxic to RAW 264.7 macrophages.
Moreover, the proliferation of RAW 264.7 macrophages was not influenced during 48 and 72
h of growth on the xerogel membrane.

3.2. Morphology of RAW macrophages on fluorinated xerogel membrane

Macrophages, which was derived from circulating blood monocytes and reside in most tissues,
play an important role in host defense and tissue homeostasis as they ingest dead tissue and
fight invading pathogens [38,39]. Therefore, the activation of macrophages is a general
characteristic for the early stages of pathogens infection. LPS, a major outer membrane
component of Gram-negative bacteria, plays an important role in the pathogenesis of Gram-
negative bacterial infection [40] and has been served as an important active component for
pathogen-induced macrophage inflammation studies [41]. In general, LPS stimulation caused
some morphological changes in human macrophages such as the formation of lamellipodia
and the extensive cell spreading [42]. But these LPS induced morphological changes in RAW
264.7 macrophages by conventional microscopy could not provide the ultrastructural changes
in RAW 264.7 macrophages by LPS stimulation.
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AFM has emerged as an imaging technique that provides 3D topographic information and
structural details of biological samples including microorganisms, cell membranes, biopoly‐
mers, and more. Therefore, AFM is now a common tool for nanotechnology, not only for
imaging but also to measure the interaction forces in biological systems [43]. We performed
AFM measurement to observe the morphological changes in RAW macrophages on xerogel
membrane following LPS treatment. Figure 2 shows representative AFM 3D topography
images taken from LPS-stimulated RAW cells for 0, 0.5, 1, 1.5, 6, and 24 h. As shown in Figure
2(A), control RAW macrophage showed a typical spherical shapes with ruffled membranes
and a few lamellipodia surround them. But the morphology of RAW cells after 1 h LPS
stimulation exhibited the extension of the cytoplasm toward its outside, as shown in Figure
2(C). After the LPS exposure for 1.5 h, they appeared spindle and long-stretched shapes (Figure
2(D)). The number of microspikes was increased from 1.5 h after stimulation of LPS. As a result,
RAW macrophages for 24 h LPS stimulation showed strong lamellipodia with a lot of dendritic
pseudopod. In addition, LPS stimulated RAW macrophages for 24 h showed some holes on
their surface. Saxena et al. [44] reported that LPS induced differentiation of RAW 264.7
macrophage cells into dendritic like cells. And Pi et al. [39] reported the LPS activated RAW
264.7 macrophages changed to be much bigger than control cells with some holes emerged on
cell surface. From AFM results, we suggested that RAW macrophages on fluorinated xerogel-
derived NO permeable membrane were normally activated by LPS stimulation.

Figure 2. Representative AFM 3D topography images of RAW 264.7 macrophages on fluorinated xerogel-membrane
after LPS (1 μg/ml) stimulation for (A) 0, (B) 0.5, (C) 1, (D) 1.5, (E) 6, and (F) 24 h.

3.3. Amperometric response of xerogel-derived planar-type NO sensor

The sensor performance of the resulting NO microelectrode was investigated in DMEM
solution. The calibration and dynamic response curves for NO and interfering species (i.e.,
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nitrite) are shown in Figure 3. A sensor coated with fluorinated xerogel membrane did not
exhibit serious interference from nitrite concentrations of up to 20 μM, which is a concentration
much greater than the highest level present in physiological samples. Indeed, the fluorinated
xerogel-modified sensors exhibited excellent selectivity (logK NO , j

amp ) of < –5, <–5, <–5, <–5, <–5, –
4.38, and –3.85 for j = nitrite, ascorbic acid, uric acid, acetaminophen, dopamine, hydrogen
peroxide, and carbon monoxide, respectively. In addition, the xerogel-derived sensor re‐
sponded to NO concentrations of up to 1,000 nM with respect to sensitivity (0.15 ± 0.012 nA/
nM), linearity (R2 = 0.9981, 20~1,000 nM NO range), and response time (t90% < 10 s).

Figure 3. Dynamic response (A) to nitric oxide and an interfering species (nitrite) and calibration curve (B) of the nitric
oxide sensor modified with fluorinated xerogel-derived membrane.

3.4. Real-time detection of NO release in live cells utilizing planar-type NO sensor

NO plays an important role in a variety of cellular functions, including blood vessel relaxation,
neurotransmission, and immune response [34]. It is produced through the conversion of L-
arginine into L-citrulline by diverse cell types such as macrophages, neutrophils, neuronal
cells, and endothelial cells as both an extra and intracellular signaling molecule [45]. The
mechanisms of NO formation by three kinds of nitric oxide synthase (NOS), including
endothelial (eNOS), neuronal (nNOS), and inducible NOS (iNOS), are well established [46].
Among them, the expression of iNOS is induced by stimulation of cells with LPS and/or
proinflammatory cytokines [46,47]. Macrophage iNOS is responsible for producing large
quantities of NO, which are synthesized over the period of several hours after cells are
stimulated [34]. NO plays an important role as part of a nonspecific defense mechanism, as a
signaling molecule between macrophages and other cells and as an intracellular messenger
within the macrophages themselves [45]. Besides, NO produced by endothelium cells plays a
critical role in regulation of vascular tone and activity. The continuous detection of NO release
from endothelium could provide new and important insights into the modulatory role of NO
in cardiovascular system [48].

However, most methods for NO quantification are indirect including spectroscopic ap‐
proaches such as the Griess assay which determines the major and stable products of NO
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degradation—nitrite and nitrate, as well as the detection of methemoglobin after NO reaction
with oxyhemoglobin [9–11]. Unfortunately, these methods often fail to accurately reflect the
dynamics of NO in vivo, in vitro, and in real time [12]. In contrast to other electrochemical NO
sensor designs, xerogel-based NO sensors are fabricated using a simple coating procedure,
with high sensitivity, selectivity, and reproducibility [8].

Figure 4 represents real-time detection monitoring of NO release by a planar-type xerogel-
derived NO sensor in RAW 264.7 macrophages stimulated by LPS. In control RAW macro‐
phages, there was no increase in current throughout the whole experimental period. But the
current resulting from NO production started to rise in 5,500 s after LPS stimulation. After
reaching the maximum current in 6,000 s, a slow decline in NO production lasted for the rest
of the experiment. The maximum change in NO concentration was about 60 nM, based on in
vitro calibration results.

Figure 4. Representative real-time measurement of NO release in RAW 264.7 macrophages stimulated by lipopolysac‐
charide.

4. Conclusions

In this study, we evaluated the biocompatibility of sol-gel derived NO permeable membranes
modified with fluorinated functional groups with RAW 264.7 macrophages. Our results
showed that xerogel-derived NO permeable membrane was nontoxic and could provide good
cell adhesion. In addition, the morphology of these adhering RAW 264.7 macrophages did not
show any differences compared to those grown on other biocompatible membranes. Therefore,
we expected that fluorinated xerogel-derived membrane could be utilized as both NO gas
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permeable and cell-adhesive membranes on which cells are directly grown for a cellular NO
sensor. Besides, in the planar-type sensor with NO permeable membrane, there is no need to
adjust the distance between sensor and cells. Overall, in contrast to other electrochemical NO
sensor designs, xerogel-based NO sensors can be easily applied to the cellular sensing system,
with a simple coating procedure.

In summary, a planar-type NO sensor with fluorinated xerogel membrane has good sensitivity
and specificity for detecting biologically released NO in live cells. And we successfully
measured the NO release in RAW 264.7 macrophages stimulated by LPS, utilizing our planar-
type xerogel-derived NO sensor. Therefore, we expect that our sensor can be applied for real-
time monitoring of NO dynamics in various cells, tissues, and organs.
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