73 research outputs found

    Thrombospondin-1 protects against Aβ-induced mitochondrial fragmentation and dysfunction in hippocampal cells.

    Get PDF
    Alzheimer's disease (AD) is often characterized by the impairment of mitochondrial function caused by excessive mitochondrial fragmentation. Thrombospondin-1 (TSP-1), which is primarily secreted from astrocytes in the central nervous system (CNS), has been suggested to play a role in synaptogenesis, spine morphology, and synaptic density of neurons. In this study, we investigate the protective role of TSP-1 in the recovery of mitochondrial morphology and function in amyloid β (Aβ)-treated mouse hippocampal neuroblastoma cells (HT22). We observe that TSP-1 inhibits Aβ-induced mitochondrial fission by maintaining phosphorylated-Drp1 (p-Drp1) levels, which results in reduced Drp1 translocation to the mitochondria. By using gabapentin, a drug that antagonizes the interaction between TSP-1 and its neuronal receptor α2δ1, we observe that α2δ1 acts as one of the target receptors for TSP-1, and blocks the reduction of the p-Drp1 to Drp1 ratio, in the presence of Aβ. Taken together, TSP-1 appears to contribute to maintaining the balance in mitochondrial dynamics and mitochondrial functions, which is crucial for neuronal cell viability. These data suggest that TSP-1 may be a potential therapeutic target for AD

    Subchronic inhalation toxicity of gold nanoparticles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gold nanoparticles are widely used in consumer products, including cosmetics, food packaging, beverages, toothpaste, automobiles, and lubricants. With this increase in consumer products containing gold nanoparticles, the potential for worker exposure to gold nanoparticles will also increase. Only a few studies have produced data on the <it>in vivo </it>toxicology of gold nanoparticles, meaning that the absorption, distribution, metabolism, and excretion (ADME) of gold nanoparticles remain unclear.</p> <p>Results</p> <p>The toxicity of gold nanoparticles was studied in Sprague Dawley rats by inhalation. Seven-week-old rats, weighing approximately 200 g (males) and 145 g (females), were divided into 4 groups (10 rats in each group): fresh-air control, low-dose (2.36 × 10<sup>4 </sup>particle/cm<sup>3</sup>, 0.04 μg/m<sup>3</sup>), middle-dose (2.36 × 10<sup>5 </sup>particle/cm<sup>3</sup>, 0.38 μg/m<sup>3</sup>), and high-dose (1.85 × 10<sup>6 </sup>particle/cm<sup>3</sup>, 20.02 μg/m<sup>3</sup>). The animals were exposed to gold nanoparticles (average diameter 4-5 nm) for 6 hours/day, 5 days/week, for 90-days in a whole-body inhalation chamber. In addition to mortality and clinical observations, body weight, food consumption, and lung function were recorded weekly. At the end of the study, the rats were subjected to a full necropsy, blood samples were collected for hematology and clinical chemistry tests, and organ weights were measured. Cellular differential counts and cytotoxicity measurements, such as albumin, lactate dehydrogenase (LDH), and total protein were also monitored in a cellular bronchoalveolar lavage (BAL) fluid. Among lung function test measurements, tidal volume and minute volume showed a tendency to decrease comparing control and dose groups during the 90-days of exposure. Although no statistically significant differences were found in cellular differential counts, histopathologic examination showed minimal alveoli, an inflammatory infiltrate with a mixed cell type, and increased macrophages in the high-dose rats. Tissue distribution of gold nanoparticles showed a dose-dependent accumulation of gold in only lungs and kidneys with a gender-related difference in gold nanoparticles content in kidneys.</p> <p>Conclusions</p> <p>Lungs were the only organ in which there were dose-related changes in both male and female rats. Changes observed in lung histopathology and function in high-dose animals indicate that the highest concentration (20 μg/m<sup>3</sup>) is a LOAEL and the middle concentration (0.38 μg/m<sup>3</sup>) is a NOAEL for this study.</p

    Mitochondria-Specific Accumulation of Amyloid β Induces Mitochondrial Dysfunction Leading to Apoptotic Cell Death

    Get PDF
    Mitochondria are best known as the essential intracellular organelles that host the homeostasis required for cellular survival, but they also have relevance in diverse disease-related conditions, including Alzheimer's disease (AD). Amyloid β (Aβ) peptide is the key molecule in AD pathogenesis, and has been highlighted in the implication of mitochondrial abnormality during the disease progress. Neuronal exposure to Aβ impairs mitochondrial dynamics and function. Furthermore, mitochondrial Aβ accumulation has been detected in the AD brain. However, the underlying mechanism of how Aβ affects mitochondrial function remains uncertain, and it is questionable whether mitochondrial Aβ accumulation followed by mitochondrial dysfunction leads directly to neuronal toxicity. This study demonstrated that an exogenous Aβ1–42 treatment, when applied to the hippocampal cell line of mice (specifically HT22 cells), caused a deleterious alteration in mitochondria in both morphology and function. A clathrin-mediated endocytosis blocker rescued the exogenous Aβ1–42-mediated mitochondrial dysfunction. Furthermore, the mitochondria-targeted accumulation of Aβ1–42 in HT22 cells using Aβ1–42 with a mitochondria-targeting sequence induced the identical morphological alteration of mitochondria as that observed in the APP/PS AD mouse model and exogenous Aβ1–42-treated HT22 cells. In addition, subsequent mitochondrial dysfunctions were demonstrated in the mitochondria-specific Aβ1–42 accumulation model, which proved indistinguishable from the mitochondrial impairment induced by exogenous Aβ1–42-treated HT22 cells. Finally, cellular toxicity was directly induced by mitochondria-targeted Aβ1–42 accumulation, which mimics the apoptosis process in exogenous Aβ1–42-treated HT22 cells. Taken together, these results indicate that mitochondria-targeted Aβ1–42 accumulation is the necessary and sufficient condition for Aβ-mediated mitochondria impairments, and leads directly to cellular death rather than along with other Aβ-mediated signaling alterations

    Quantitative prediction of mixture toxicity of AgNO3 and ZnO nanoparticles on Daphnia magna

    No full text
    Once metal-based engineered nanoparticles (NPs) are released into the aquatic environment, they are expected to interact with other existing co-contaminants. A knowledge gap exists as to how the interaction of NPs with other co-contaminants occurs. Here we selected ZnO NPs among various NPs, with Ag ion existing as a contaminant in the aquatic environment by Ag NPs widely used. A novel modeling strategy was demonstrated enabling quantitative and predictive evaluation of the aqueous mixture nanotoxicity. Individual and binary mixture toxicity tests of ZnO NPs and silver (as AgNO3) on Daphnia magna were conducted and compared to determine whether the presence of Ag ions affects the toxicity of ZnO NPs. Binary mixture toxicity was evaluated based on the concentration addition (CA) and independent action models. The CA dose-ratio dependent model was found to be the model of best fit for describing the pattern of mixture toxicity. The MIX I and MIX III suspensions (higher ratios of ZnO NPs to AgNO3) showed a synergism, whereas the MIX II suspension (lower ratio of ZnO NPs to AgNO3) showed an antagonism. The synergistic mixture toxicity at higher ratios of ZnO NPs to AgNO3 was caused by either the physiological or metabolic disturbance induced by the excessive ionic Zn or increased transport and accumulation in D. magna via the formation of complex of ionic Ag with ZnO NPs. Therefore, the toxicity level contributed via their aggregation and physicochemical properties and the dissolved ions played a crucial role in the mixture toxicities of the NPs

    Three Perspectives for Evaluating Human-Robot Interaction

    No full text
    The experience of interacting with a robot has been shown to be very different in comparison to people's interaction experience with other technologies and artifacts, and often has a strong social or emotional component { a fact that raises concerns related to evaluation. In this paper we outline how this difference is due in part to the general complexity of robots' overall context of interaction, related to their dynamic presence in the real world and their tendency to invoke a sense of agency. A growing body of work in Human-Robot Interaction (HRI) focuses on exploring this overall context and tries to unpack what exactly is unique about interaction with robots, often through leveraging evaluation methods and frameworks designed for more-traditional HCI. We raise the concern that, due to these differences, HCI evaluation methods should be applied to HRI with care, and we present a survey of HCI evaluation techniques from the perspective of the unique challenges of robots. Further, we have developed a new set of tools to aid evaluators in targeting and unpacking the holistic human-robot interaction experience. Our technique surrounds the development of a map of interaction experience possibilities and, as part of this, we present a set of three perspectives for targeting specific components of interaction experience, and demonstrate how these tools can be practically used in evaluation.N
    corecore