16,062 research outputs found
Stability of the U(1) spin liquid with spinon Fermi surface in 2+1 dimensions
We study the stability of the 2+1 dimensional U(1) spin liquid state against
proliferation of instantons in the presence of spinon Fermi surface. By mapping
the spinon Fermi surface into an infinite set of 1+1 dimensional chiral
fermions, it is argued that an instanton has an infinite scaling dimension for
any nonzero number of spinon flavors. Therefore, the spin liquid phase is
stable against instantons and the non-compact U(1) gauge theory is a good low
energy description.Comment: 14 pages, 7 figures, v3) minor corrections, to appear in PR
Glacial cycles drive variations in the production of oceanic crust
Glacial cycles redistribute water between oceans and continents causing
pressure changes in the upper mantle, with consequences for melting of Earth's
interior. Using Plio-Pleistocene sea-level variations as a forcing function,
theoretical models of mid-ocean ridge dynamics that include melt transport
predict temporal variations in crustal thickness of hundreds of meters. New
bathymetry from the Australian-Antarctic ridge shows significant spectral
energy near the Milankovitch periods of 23, 41, and 100 ky, consistent with
model predictions. These results suggest that abyssal hills, one of the most
common bathymetric features on Earth, record the magmatic response to changes
in sea level. The models and data support a link between glacial cycles at the
surface and mantle melting at depth, recorded in the bathymetric fabric of the
sea floor.Comment: 30 pages, 6 figures (including supplementary information).
Resubmitted to Science on 12 December 201
"Dark" Z implications for Parity Violation, Rare Meson Decays, and Higgs Physics
General consequences of mass mixing between the ordinary Z boson and a
relatively light Z_d boson, the "dark" Z, arising from a U(1)_d gauge symmetry,
associated with a hidden sector such as dark matter, are examined. New effects
beyond kinetic mixing are emphasized. Z-Z_d mixing introduces a new source of
low energy parity violation well explored by possible future atomic parity
violation and planned polarized electron scattering experiments. Rare K (B)
meson decays into pi (K) l^+ l^- (l = e, mu) and pi (K) nu anti-nu are found to
already place tight constraints on the size of Z-Z_d mixing. Those
sensitivities can be further improved with future dedicated searches at K and B
factories as well as binned studies of existing data. Z-Z_d mixing can also
lead to the Higgs decay H -> Z Z_d, followed by Z -> l_1^+ l_1^- and Z_d ->
l_2^+ l_2^- or "missing energy", providing a potential hidden sector discovery
channel at the LHC. An illustrative realization of these effects in a 2 Higgs
doublet model is presented.Comment: Version to appear in PR
Pairing Symmetry in the Anisotropic Fermi Superfluid under p-wave Feshbach Resonance
The anisotropic Fermi superfluid of ultra-cold Fermi atoms under the p-wave
Feshbach resonance is studied theoretically. The pairing symmetry of the ground
state is determined by the strength of the atom-atom magnetic dipole
interaction. It is for a strong dipole interaction; while it becomes , up to a rotation about z, for a weak one (Here < 1 is a
numerical coefficient). By changing the external magnetic field or the atomic
gas density, a phase transition between these two states can be driven. We
discuss how the pairing symmetry of the ground state can be determined in the
time-of-flight experiments.Comment: 12 pages, 7 figure
The Effects of d_{x^2-y^2}-d_{xy} Mixing on Vortex Structures and Magnetization
The structure of an isolated single vortex and the vortex lattice, and the
magnetization in a -wave superconductor are investigated within a
phenomenological Ginzburg-Landau (GL) model including the mixture of the
-wave and -wave symmetry. The isolated single vortex
structure in a week magnetic field is studied both numerically and
asymptotically. Near the upper critical field , the vortex lattice
structure and the magnetization are calculated analytically.Comment: 14 pages, REVTeX, 2 EPS figures, Journal of Physics: Condensed Matter
(in press
Design data collection with Skylab/EREP microwave instrument S-193
There are no author-identified significant results in this report
Nonlinear and conventional biosignal analyses applied to tilt table test for evaluating autonomic nervous system and autoregulation
Copyright © Tseng et al.; Licensee Bentham Open.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.Tilt table test (TTT) is a standard examination for patients with suspected autonomic nervous system (ANS) dysfunction or uncertain causes of syncope. Currently, the analytical method based on blood pressure (BP) or heart rate (HR) changes during the TTT is linear but normal physiological modulations of BP and HR are thought to be predominately nonlinear. Therefore, this study consists of two parts: the first part is analyzing the HR during TTT which is compared to three methods to distinguish normal controls and subjects with ANS dysfunction. The first method is power spectrum density (PSD), while the second method is detrended fluctuation analysis (DFA), and the third method is multiscale entropy (MSE) to calculate the complexity of system. The second part of the study is to analyze BP and cerebral blood flow velocity (CBFV) changes during TTT. Two measures were used to compare the results, namely correlation coefficient analysis (nMxa) and MSE. The first part of this study has concluded that the ratio of the low frequency power to total power of PSD, and MSE methods are better than DFA to distinguish the difference between normal controls and patients groups. While in the second part, the nMxa of the three stages moving average window is better than the nMxa with all three stages together. Furthermore the analysis of BP data using MSE is better than CBFV data.The Stroke Center and Department of Neurology, National Taiwan University, National Science Council in Taiwan, and the Center for Dynamical Biomarkers
and Translational Medicine, National Central University, which is sponsored by National Science Council and Min-Sheng General Hospital Taoyuan
- …