4,989 research outputs found

    Electrical Investigation of the Oblique Hanle Effect in Ferromagnet/Oxide/Semiconductor Contacts

    Full text link
    We have investigated the electrical Hanle effect with magnetic fields applied at an oblique angle ({\theta}) to the spin direction (the oblique Hanle effect, OHE) in CoFe/MgO/semiconductor (SC) contacts by employing a three-terminal measurement scheme. The electrical oblique Hanle signals obtained in CoFe/MgO/Si and CoFe/MgO/Ge contacts show clearly different line shapes depending on the spin lifetime of the host SC. Notably, at moderate magnetic fields, the asymptotic values of the oblique Hanle signals (in both contacts) are consistently reduced by a factor of cos^2({\theta}) irrespective of the bias current and temperature. These results are in good agreement with predictions of the spin precession and relaxation model for the electrical oblique Hanle effect. At high magnetic fields where the magnetization of CoFe is significantly tilted from the film plane to the magnetic field direction, we find that the observed angular dependence of voltage signals in the CoFe/MgO/Si and CoFe/MgO/Ge contacts are well explained by the OHE, considering the misalignment angle between the external magnetic field and the magnetization of CoFe.Comment: 19 pages, 8 figure

    Physiological Antioxidative Network of the Bilirubin System in Aging and Age-Related Diseases

    Get PDF
    Oxidative stress is detrimental to life process and is particularly responsible for aging and age-related diseases. Thus, most organisms are well equipped with a spectrum of biological defense mechanisms against oxidative stress. The major efficient antioxidative mechanism is the glutathione system, operating a redox cycling mechanism for glutathione utilization, which consists of glutathione and its peroxidase and reductase. However, this system is mainly effective for hydrophilic oxidants, while lipophilic oxidants require another scavenging system. Since many age-related pathological conditions are related to lipid peroxidation, especially in association with the aging process, the physiological role of the scavenging system for lipophilic oxidants should be considered. In this regard, the biliverdin to bilirubin conversion pathway, via biliverdin reductase (BVR), is suggested to be another major protective mechanism that scavenges lipophilic oxidants because of the lipophilic nature of bilirubin. The efficiency of this bilirubin system might be potentiated by operation of the intertwined bicyclic systems of the suggested redox metabolic cycle of biliverdin and bilirubin and the interactive control cycle of BVR and heme oxygenase. In order to combat oxidative stress, both antioxidative systems against hydrophilic and lipophilic oxidants are required to work cooperatively. In this regard, the roles of the bilirubin system in aging and age-related diseases are reassessed in this review, and their interacting networks are evaluated

    Distributed stabilization control of rigid formations with prescribed orientation

    Full text link
    Most rigid formation controllers reported in the literature aim to only stabilize a rigid formation shape, while the formation orientation is not controlled. This paper studies the problem of controlling rigid formations with prescribed orientations in both 2-D and 3-D spaces. The proposed controllers involve the commonly-used gradient descent control for shape stabilization, and an additional term to control the directions of certain relative position vectors associated with certain chosen agents. In this control framework, we show the minimal number of agents which should have knowledge of a global coordinate system (2 agents for a 2-D rigid formation and 3 agents for a 3-D rigid formation), while all other agents do not require any global coordinate knowledge or any coordinate frame alignment to implement the proposed control. The exponential convergence to the desired rigid shape and formation orientation is also proved. Typical simulation examples are shown to support the analysis and performance of the proposed formation controllers.Comment: This paper was submitted to Automatica for publication. Compared to the submitted version, this arXiv version contains complete proofs, examples and remarks (some of them are removed in the submitted version due to space limit.

    The effects of Thomson scattering and chemical mixing on early-time light curves of double peaked type IIb supernovae

    Full text link
    Previous numerical simulations of double-peaked SNe IIb light curves have demonstrated that the radius and mass of the hydrogen-rich envelope of the progenitor star can significantly influence the brightness and timescale of the early-time light curve around the first peak. In this study, we investigate how Thomson scattering and chemical mixing in the SN ejecta affect the optical light curves during the early stages of the SNe IIb using radiation hydrodynamics simulations. By comparing the results from two different numerical codes (i.e., \stella{} and \snec{}), we find that the optical brightness of the first peak can be reduced by more than a factor of 3 due to the effect of Thomson scattering that causes the thermalization depth to be located below the Rosseland-mean photosphere, compared to the corresponding case where this effect is ignored. We also observe a short-lived plateau-like feature lasting for a few days in the early-time optical light curves of our models, in contrast to typical observed SNe IIb that show a quasi-linear decrease in optical magnitudes after the first peak. A significant degree of chemical mixing between the hydrogen-rich envelope and the helium core in SN ejecta is required to reconcile this discrepancy between the model prediction and observation. Meanwhile, to properly reproduce the first peak, a significant mixing of \nifs{} into the hydrogen-rich outermost layers should be restricted. Our findings indicate that inferring the SN IIb progenitor structure from a simplified approach that ignores these two factors may introduce substantial uncertainty.Comment: 28 pages, 21 figures, accepted for Ap

    The 750 GeV Diphoton Excess May Not Imply a 750 GeV Resonance

    Get PDF
    We discuss non-standard interpretations of the 750 GeV diphoton excess recently reported by the ATLAS and CMS Collaborations which do not involve a new, relatively broad, resonance with a mass near 750 GeV. Instead, we consider the sequential cascade decay of a much heavier, possibly quite narrow, resonance into two photons along with one or more invisible particles. The resulting diphoton invariant mass signal is generically rather broad, as suggested by the data. We examine three specific event topologies - the antler, the sandwich, and the 2-step cascade decay, and show that they all can provide a good fit to the observed published data. In each case, we delineate the preferred mass parameter space selected by the best fit. In spite of the presence of invisible particles in the final state, the measured missing transverse energy is moderate, due to its anti- correlation with the diphoton invariant mass. We comment on the future prospects of discriminating with higher statistics between our scenarios, as well as from more conventional interpretations.Comment: Discussion about the ATLAS Moriond EW2016 added. Matched to PRL accepted versio

    Distance-based Control of Kn Formations in General Space with Almost Global Convergence

    Get PDF
    In this paper, we propose a distance-based formation control strategy for a group of mobile agents to achieve almost global convergence to a target formation shape provided that the formation is represented by a complete graph, and each agent is governed by a single-integrator model. The undamental idea of achieving almost global convergence is to use a virtual formation of which the dimension is augmented with some virtual coordinates. We define a cost function associated with the virtual formation and apply the gradient-descent algorithm to the cost function so that the function has a global minimum at the target formation shape. We show that all agents finally achieve the target formation shape for almost all initial conditions under the proposed control law.This work was supported in part by the Australian Research Council under Grants DP130103610 and DP160104500, and in part by the National Research Foundation of Korea under Grant NRF-2017R1A2B3007034. The work of Z. Sun was supported by the Prime Minister’s Australia Asia Incoming Endeavour Postgraduate Award

    Optical Spectroscopy of Supernova Remnants in M81 and M82

    Full text link
    We present spectroscopy of 28 SNR candidates as well as one H II region in M81, and two SNR candidates in M82. Twenty six out of the M81 candidates turn out to be genuine SNRs, and two in M82 may be shocked condensations in the galactic outflow or SNRs. The distribution of [N II]/H{\alpha} ratios of M81 SNRs is bimodal. M81 SNRs are divided into two groups in the spectral line ratio diagrams: an [O III]-strong group and an [O III]-weak group. The latter have larger sizes, and may have faster shock velocity. [N II]/H{\alpha} ratios of the SNRs show a strong correlation with [S II]/H{\alpha} ratios. They show a clear radial gradient in [N II]/H{\alpha} and [S II]/H{\alpha} ratios: dLog ([N II]/H{\alpha})/dLog R = -0.018 {\pm} 0.008 dex/kpc and dLog ([S II]/H{\alpha})/dLog R = -0.016 {\pm} 0.008 dex/kpc where R is a deprojected galactocentric distance. We estimate the nitrogen and oxygen abundance of the SNRs from the comparison with shock-ionization models. We obtain a value for the nitrogen radial gradient, dLog(N/H)/dLogR = -0.023 {\pm} 0.009 dex/kpc, and little evidence for the gradient in oxygen. This nitrogen abundance shows a few times flatter gradient than those of the planetary nebulae and H II regions. We find that five SNRs are matched with X-ray sources. Their X-ray hardness colors are consistent with thermal SNRs.Comment: 19 pages, 24 figures, 5 tables, ApJ accepte
    corecore