175 research outputs found

    Links between traumatic brain injury and ballistic pressure waves originating in the thoracic cavity and extremities

    Full text link
    Identifying patients at risk of traumatic brain injury (TBI) is important because research suggests prophylactic treatments to reduce risk of long-term sequelae. Blast pressure waves can cause TBI without penetrating wounds or blunt force trauma. Similarly, bullet impacts distant from the brain can produce pressure waves sufficient to cause mild to moderate TBI. The fluid percussion model of TBI shows that pressure impulses of 15-30 psi cause mild to moderate TBI in laboratory animals. In pigs and dogs, bullet impacts to the thigh produce pressure waves in the brain of 18-45 psi and measurable injury to neurons and neuroglia. Analyses of research in goats and epidemiological data from shooting events involving humans show high correlations (r > 0.9) between rapid incapacitation and pressure wave magnitude in the thoracic cavity. A case study has documented epilepsy resulting from a pressure wave without the bullet directly hitting the brain. Taken together, these results support the hypothesis that bullet impacts distant from the brain produce pressure waves that travel to the brain and can retain sufficient magnitude to induce brain injury. The link to long-term sequelae could be investigated via epidemiological studies of patients who were gunshot in the chest to determine whether they experience elevated rates of epilepsy and other neurological sequelae

    The genus phymatolithon in the Gulf of Maine

    Full text link
    New information on anatomy, cytology and the development of reproductive structures is presented to show that Phymatolithon is a genus distinct from both Clathromorphum and the branching members of Lithothamnium . Also, a new species of Phymatolithon , Ph. rugulosum , is described. The reproductive cycles and geographic and bathymetric distributions of Ph. laevigatum and Ph. rugulosum in the Gulf of Maine are presented and discussed. There is strong indication that the geographic distribution of crustose corallines in the region is controlled primarily by maximum summer temperatures. The depth distributions are apparently controlled primarily by decrease of light with depth, though temperatures and substrate are also factors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42883/1/10750_2004_Article_BF00170412.pd

    Transforming Cars into Computers: Interdisciplinary Opportunities for HCI

    Get PDF
    Road and highway infrastructures are being transformed in anticipation of self-driving vehicles. During the transition to fully autonomous road networks people and driverless cars will interact with each other in mixed traffic situations. Vehicles are currently equipped with two types of communication devices one auditory (a horn) and the other visual (signalling lights). In many instances, human drivers use these devices in combination with embodied interaction such as eye contact and gesture when communicating with other road users. Hence, horn and signalling devices currently in use may not be enough to communicate with others in traffic settings; especially when driverless vehicles become responsible for the main driving activity. Driverless vehicles require new interaction types that support Human-AV interaction in an easy to understand and intuitive way. With the transformation of cars into computers new opportunities for research present themselves to the HCI community

    North American Wild Relatives of Grain Crops

    Get PDF
    The wild-growing relatives of the grain crops are useful for long-term worldwide crop improvement research. There are neglected examples that should be accessioned as living seeds in gene banks. Some of the grain crops, amaranth, barnyard millet, proso millet, quinoa, and foxtail millet, have understudied unique and potentially useful crop wild relatives in North America. Other grain crops, barley, buckwheat, and oats, have fewer relatives in North America that are mostly weeds from other continents with more diverse crop wild relatives. The expanding abilities of genomic science are a reason to accession the wild species since there are improved ways to study evolution within genera and make use of wide gene pools. Rare wild species, especially quinoa relatives in North American, should be acquired by gene banks in cooperation with biologists that already study and conserve at-risk plant populations. Many of the grain crop wild relatives are weeds that have evolved herbicide resistance that could be used in breeding new herbicide-resistant cultivars, so well-documented examples should be accessioned and also vouchered in gene banks

    Frost‐Induced Natural Crossing in Barley, and a Corollary on Stem Rust Persistence

    No full text

    Male‐sterile Facilitated Synthetic Hybrid Barley 1

    No full text

    Breeding for Resistance to Yellow Dwarf Virus in Barley

    No full text

    The Use of Male‐Sterile in Barley Improvement

    No full text
    corecore