22 research outputs found

    The Causal Effect of Vitamin D Binding Protein (DBP) Levels on Calcemic and Cardiometabolic Diseases: A Mendelian Randomization Study

    Get PDF
    Background: Observational studies have shown that vitamin D binding protein (DBP) levels, a key determinant of 25-hydroxy- vitamin D (25OHD) levels, and 25OHD levels themselves both associate with risk of disease. If 25OHD levels have a causal influence on disease, and DBP lies in this causal pathway, then DBP levels should likewise be causally associated with disease. We undertook a Mendelian randomization study to determine whether DBP levels have causal effects on common calcemic and cardiometabolic disease. Methods and Findings: We measured DBP and 25OHD levels in 2,254 individuals, followed for up to 10 y, in the Canadian Multicentre Osteoporosis Study (CaMos). Using the single nucleotide polymorphism rs2282679 as an instrumental variable, we applied Mendelian randomization methods to determine the causal effect of DBP on calcemic (osteoporosis and hyperparathyroidism) and cardiometabolic diseases (hypertension, type 2 diabetes, coronary artery disease, and stroke) and related traits, first in CaMos and then in large-scale genome-wide association study consortia. The effect allele was associated with an age-and sex-adjusted decrease in DBP level of 27.4 mg/l (95% CI 24.7, 30.0; n=2,254). DBP had a strong observational and causal association with 25OHD levels (p=3.2x10(-19)). While DBP levels were observationally associated with calcium and body mass index (BMI),these associations were not supported by causal analyses. Despite well-powered sample sizes from consortia, there were no associations of rs2282679 with any other traits and diseases: fasting glucose (0.00 mmol/l [95% CI -0.01, 0.01]; p=1.00; n=46,186); fasting insulin (0.01 pmol/l [95% CI -0.00, 0.01,] ;p=0.22; n=46,186); BMI (0.00 kg/m(2) [95% CI -0.01, 0.01]; p=0.80; n=127,587); bone mineral density (0.01 g/cm(2) [95% CI -0.01, 0.03]; p=0.36; n=32,961); mean arterial pressure (-0.06 mm Hg [95% CI -0.19, 0.07]); p=0.36; n=28,775); ischemic stroke (odds ratio [OR] = 1.00 [95% CI 0.97, 1.04]; p=0.92; n=12, 389/62, 004 cases/controls); coronary artery disease (OR = 1.02 [95% CI 0.99, 1.05]; p=0.31; n=2,233/64, 762); or type 2 diabetes (OR = 1.01 [95% CI 0.97, 1.05]; p=0.76; n=9, 580/53, 810). Conclusions: DBP has no demonstrable causal effect on any of the diseases or traits investigated here, except 25OHD levels. It remains to be determined whether 25OHD has a causal effect on these outcomes independent of DBP

    Progranulin is expressed within motor neurons and promotes neuronal cell survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Progranulin is a secreted high molecular weight growth factor bearing seven and one half copies of the cysteine-rich granulin-epithelin motif. While inappropriate over-expression of the progranulin gene has been associated with many cancers, haploinsufficiency leads to atrophy of the frontotemporal lobes and development of a form of dementia (frontotemporal lobar degeneration with ubiquitin positive inclusions, FTLD-U) associated with the formation of ubiquitinated inclusions. Recent reports indicate that progranulin has neurotrophic effects, which, if confirmed would make progranulin the only neuroprotective growth factor that has been associated genetically with a neurological disease in humans. Preliminary studies indicated high progranulin gene expression in spinal cord motor neurons. However, it is uncertain what the role of Progranulin is in normal or diseased motor neuron function. We have investigated progranulin gene expression and subcellular localization in cultured mouse embryonic motor neurons and examined the effect of progranulin over-expression and knockdown in the NSC-34 immortalized motor neuron cell line upon proliferation and survival.</p> <p>Results</p> <p><it>In situ </it>hybridisation and immunohistochemical techniques revealed that the <it>progranulin </it>gene is highly expressed by motor neurons within the mouse spinal cord and in primary cultures of dissociated mouse embryonic spinal cord-dorsal root ganglia. Confocal microscopy coupled to immunocytochemistry together with the use of a progranulin-green fluorescent protein fusion construct revealed progranulin to be located within compartments of the secretory pathway including the Golgi apparatus. Stable transfection of the human <it>progranulin </it>gene into the NSC-34 motor neuron cell line stimulates the appearance of dendritic structures and provides sufficient trophic stimulus to survive serum deprivation for long periods (up to two months). This is mediated at least in part through an anti-apoptotic mechanism. Control cells, while expressing basal levels of progranulin do not survive in serum free conditions. Knockdown of progranulin expression using shRNA technology further reduced cell survival.</p> <p>Conclusion</p> <p>Neurons are among the most long-lived cells in the body and are subject to low levels of toxic challenges throughout life. We have demonstrated that progranulin is abundantly expressed in motor neurons and is cytoprotective over prolonged periods when over-expressed in a neuronal cell line. This work highlights the importance of progranulin as neuroprotective growth factor and may represent a therapeutic target for neurodegenerative diseases including motor neuron disease.</p

    Genetics of host innate immune factors in Tuberculosis susceptibility

    No full text
    Tuberculosis, caused by Mycobacterium tuberculosis, is globally a leading cause of morbidity and mortality. While a host genetic contribution to tuberculosis susceptibility is known to occur, the extent and nature of host genetic variability to tuberculosis pathogenesis are unknown. Thus, to better understand the role of host genetic factors in tuberculosis susceptibility, we have tested the contribution of candidate gene variants to tuberculosis susceptibility in three geographically, epidemically, and clinically distinct populations. We chose four candidate genes involved in the innate immune response, namely, NRAMP1, MBL, SFTPA1, and SFTPA2.Since the global spread of tuberculosis is highly dependent on HIV/AIDS pandemic, we investigated the association of genetic MBL variants and HIV-1 infection in 278 Colombian HIV-infected and control individuals. MBL genotype frequencies were similar for both groups, and no association was detected between MBL alleles B, C, and D and susceptibility to HIV-1 infection (P = 1.0). These results do not support the hypothesis that MBL levels are a risk factor for HIV-1 infection in Colombia. Moreover, we were able to show that MBL variants do not contribute to tuberculosis susceptibility in this population.In a pediatric population composed of 184 families we found allelic variants in the NRAMP1 gene to be associated with tuberculosis disease (P = 0.01; Odds ratio [OR] = 1.75 [95% confidence interval: 1.10--2.77]). Common NRAMP1 alleles were identified as risk factors for pediatric tuberculosis while these same alleles were reported to be protective in adult cases, suggesting that the common alleles promote rapid progression from infection to tuberculosis disease. Furthermore, the association of NRAMP1 with pediatric tuberculosis disease was significantly heterogeneous (P = 0.01) between simplex (P < 0.0008; OR = 3.13 [1.54--6.25]) and multiplex families (P = 1) suggesting an interplay between mechanisms of genetic control and exposure intensities. Finally, we tested the correlation between the NRAMP1 risk and NRAMP1 functional activity by measuring the recruitment efficiency of mannose-6-phosphate receptor (M6PR) to Salmonella containing vacuoles (SCV) in monocyte-derived-macrophages (MDM). We show that recruitment of M6PR to SCV is significantly lower ( P = 0.024) in MDM from patients homozygous for the risk allele as compared to MDM from heterozygous patients. Thus, altered function of NRAMP1 appears to modulate the rate of progression from infection to disease

    Solar ultraviolet-B radiation and vitamin D: a cross-sectional population-based study using data from the 2007 to 2009 Canadian Health Measures Survey

    No full text
    Abstract Background Exposure to solar ultraviolet-B (UV-B) radiation is a major source of vitamin D3. Chemistry climate models project decreases in ground-level solar erythemal UV over the current century. It is unclear what impact this will have on vitamin D status at the population level. The purpose of this study was to measure the association between ground-level solar UV-B and serum concentrations of 25-hydroxyvitamin D (25(OH)D) using a secondary analysis of the 2007 to 2009 Canadian Health Measures Survey (CHMS). Methods Blood samples collected from individuals aged 12 to 79 years sampled across Canada were analyzed for 25(OH)D (n = 4,398). Solar UV-B irradiance was calculated for the 15 CHMS collection sites using the Tropospheric Ultraviolet and Visible Radiation Model. Multivariable linear regression was used to evaluate the association between 25(OH)D and solar UV-B adjusted for other predictors and to explore effect modification. Results Cumulative solar UV-B irradiance averaged over 91 days (91-day UV-B) prior to blood draw correlated significantly with 25(OH)D. Independent of other predictors, a 1 kJ/m2 increase in 91-day UV-B was associated with a significant 0.5 nmol/L (95% CI 0.3-0.8) increase in mean 25(OH)D (P = 0.0001). The relationship was stronger among younger individuals and those spending more time outdoors. Based on current projections of decreases in ground-level solar UV-B, we predict less than a 1 nmol/L decrease in mean 25(OH)D for the population. Conclusions In Canada, cumulative exposure to ambient solar UV-B has a small but significant association with 25(OH)D concentrations. Public health messages to improve vitamin D status should target safe sun exposure with sunscreen use, and also enhanced dietary and supplemental intake and maintenance of a healthy body weight

    Genetic polymorphisms of innate immunity-related inflammatory pathways and their association with factors related to type 2 diabetes

    No full text
    Abstract Background Type 2 diabetes mellitus (T2DM) has been linked to a state of pre-clinical chronic inflammation resulting from abnormalities in the innate immune pathway. Serum levels of pro-inflammatory cytokines and acute-phase proteins, collectively known as 'inflammatory network', are elevated in the pre-, or early, stages of T2DM and increase with disease progression. Genetic variation can affect the innate immune response to certain environmental factors, and may, therefore, determine an individual's lifetime risk of disease. Methods We conducted a cross-sectional study in 6,720 subjects from the TwinsUK Registry to evaluate the association between 18 single nucleotide polymorphisms (SNPs) in five genes (TLR4, IL1A, IL6, TNFA, and CRP) along the innate immunity-related inflammatory pathway and biomarkers of predisposition to T2DM [fasting insulin and glucose, HDL- and LDL- cholesterols, triglycerides (TGs), amyloid-A, sensitive C-reactive protein (sCRP) and vitamin D binding protein (VDBP) and body mass index (BMI)]. Results Of 18 the SNPs examined for their association with nine metabolic phenotypes of interest, six were significantly associated with five metabolic phenotypes (Bonferroni correction, P ≤ 0.0027). Fasting insulin was associated with SNPs in IL6 and TNFA, serum HDL-C with variants of TNFA and CRP and serum sCRP level with SNPs in CRP. Cross-correlation analysis among the different metabolic factors related to risk of T2DM showed several significant associations. For example, BMI was directly correlated with glucose (r = 0.11), insulin (r = 0.15), sCRP (r = 0.23), LDL-C (r = 0.067) and TGs (r = 0.18) but inversely with HDL-C (r = -0.14). sCRP was also positively correlated (P < 0.0001) with insulin (r = 0.17), amyloid-A (r = 0.39), TGs (r = 0.26), and VDBP (r = 0.36) but inversely with HDL-C (r = -0.12). Conclusion Genetic variants in the innate immunity pathway and its related inflammatory cascade is associated with some metabolic risk factors for T2DM; an observation that may provide a rationale for further studying their role as biomarkers for disease early risk prediction

    Genetic polymorphisms of innate immunity-related inflammatory pathways and their association with factors related to type 2 diabetes

    Get PDF
    BACKGROUND: Type 2 diabetes mellitus (T2DM) has been linked to a state of pre-clinical chronic inflammation resulting from abnormalities in the innate immune pathway. Serum levels of pro-inflammatory cytokines and acute-phase proteins, collectively known as 'inflammatory network', are elevated in the pre-, or early, stages of T2DM and increase with disease progression. Genetic variation can affect the innate immune response to certain environmental factors, and may, therefore, determine an individual's lifetime risk of disease. METHODS: We conducted a cross-sectional study in 6,720 subjects from the TwinsUK Registry to evaluate the association between 18 single nucleotide polymorphisms (SNPs) in five genes (TLR4, IL1A, IL6, TNFA, and CRP) along the innate immunity-related inflammatory pathway and biomarkers of predisposition to T2DM [fasting insulin and glucose, HDL- and LDL- cholesterols, triglycerides (TGs), amyloid-A, sensitive C-reactive protein (sCRP) and vitamin D binding protein (VDBP) and body mass index (BMI)]. RESULTS: Of 18 the SNPs examined for their association with nine metabolic phenotypes of interest, six were significantly associated with five metabolic phenotypes (Bonferroni correction, P ≤ 0.0027). Fasting insulin was associated with SNPs in IL6 and TNFA, serum HDL-C with variants of TNFA and CRP and serum sCRP level with SNPs in CRP. Cross-correlation analysis among the different metabolic factors related to risk of T2DM showed several significant associations. For example, BMI was directly correlated with glucose (r = 0.11), insulin (r = 0.15), sCRP (r = 0.23), LDL-C (r = 0.067) and TGs (r = 0.18) but inversely with HDL-C (r = -0.14). sCRP was also positively correlated (P < 0.0001) with insulin (r = 0.17), amyloid-A (r = 0.39), TGs (r = 0.26), and VDBP (r = 0.36) but inversely with HDL-C (r = -0.12). CONCLUSION: Genetic variants in the innate immunity pathway and its related inflammatory cascade is associated with some metabolic risk factors for T2DM; an observation that may provide a rationale for further studying their role as biomarkers for disease early risk prediction

    Boxplot of vitamin D binding protein levels by rs2282679 genotype.

    No full text
    <p>rs2282679 has three genotypes, i.e., AA, AC, and CC. Homozygous carriers of the major allele (AA) comprised 51.4% of the population, heterozygous carriers (AC) comprised 39.6%, and homozygous carriers of the minor allele (CC) comprised 9.0%. Individuals carrying the effect allele, C, had lower DBP levels than those with the more common allele (AA: 384.6 mg/l [SD 48.3], <i>n</i> = 1,159; CA: 360.7 mg/l [SD 45.9], <i>n</i> = 893; CC: 322.9 mg/l [SD 39.1], <i>n</i> = 202). The effect allele showed an inverse linear relationship with DBP levels.</p
    corecore