97 research outputs found

    Recent Developments in Fast Kurtosis Imaging

    Get PDF
    Diffusion kurtosis imaging (DKI) is an extension of the popular diffusion tensor imaging (DTI) technique. DKI takes into account leading deviations from Gaussian diffusion stemming from a number of effects related to the microarchitecture and compartmentalization in biological tissues. DKI therefore offers increased sensitivity to subtle microstructural alterations over conventional diffusion imaging such as DTI, as has been demonstrated in numerous reports. For this reason, interest in routine clinical application of DKI is growing rapidly. In an effort to facilitate more widespread use of DKI, recent work by our group has focused on developing experimentally fast and robust estimates of DKI metrics. A significant increase in speed is made possible by a reduction in data demand achieved through rigorous analysis of the relation between the DKI signal and the kurtosis tensor based metrics. The fast DKI methods therefore need only 13 or 19 images for DKI parameter estimation compared to more than 60 for the most modest DKI protocols applied today. Closed form solutions also ensure rapid calculation of most DKI metrics. Some parameters can even be reconstructed in real time, which may be valuable in the clinic. The fast techniques are based on conventional diffusion sequences and are therefore easily implemented on almost any clinical system, in contrast to a range of other recently proposed advanced diffusion techniques. In addition to its general applicability, this also ensures that any acceleration achieved in conventional DKI through sequence or hardware optimization will also translate directly to fast DKI acquisitions. In this review, we recapitulate the theoretical basis for the fast kurtosis techniques and their relation to conventional DKI. We then discuss the currently available variants of the fast kurtosis techniques, their strengths and weaknesses, as well as their respective realms of application. These range from whole body applications to methods mostly suited for spinal cord or peripheral nerve, and analysis specific to brain white matter. Having covered these technical aspects, we proceed to review the fast kurtosis literature including validation studies, organ specific optimization studies and results from clinical applications

    Effects of nongaussian diffusion on "isotropic diffusion measurements'': an ex-vivo microimaging and simulation study

    Full text link
    Designing novel diffusion-weighted pulse sequences to probe tissue microstructure beyond the conventional Stejskal-Tanner family is currently of broad interest. One such technique, multidimensional diffusion MRI, has been recently proposed to afford model-free decomposition of diffusion signal kurtosis into terms originating from either ensemble variance of isotropic diffusivity or microscopic diffusion anisotropy. This ability rests on the assumption that diffusion can be described as a sum of multiple Gaussian compartments, but this is often not strictly fulfilled. The effects of nongaussian diffusion on single shot isotropic diffusion sequences were first considered in detail by de Swiet and Mitra in 1996. They showed theoretically that anisotropic compartments lead to anisotropic time dependence of the diffusion tensors, which causes the measured isotropic diffusivity to depend on gradient frame orientation. Here we show how such deviations from the multiple Gaussian compartments assumption conflates orientation dispersion with ensemble variance in isotropic diffusivity. Second, we consider additional contributions to the apparent variance in isotropic diffusivity arising due to intracompartmental kurtosis. These will likewise depend on gradient frame orientation. We illustrate the potential importance of these confounds with analytical expressions, numerical simulations in simple model geometries, and microimaging experiments in fixed spinal cord using isotropic diffusion encoding waveforms with 7.5 ms duration and 3000 mT/m maximum amplitude.Comment: 26 pages, 9 figures. Appearing in J. Magn. Reso

    Double Diffusion Encoding Prevents Degeneracy in Parameter Estimation of Biophysical Models in Diffusion MRI

    Get PDF
    Purpose: Biophysical tissue models are increasingly used in the interpretation of diffusion MRI (dMRI) data, with the potential to provide specific biomarkers of brain microstructural changes. However, the general Standard Model has recently shown that model parameter estimation from dMRI data is ill-posed unless very strong magnetic gradients are used. We analyse this issue for the Neurite Orientation Dispersion and Density Imaging with Diffusivity Assessment (NODDIDA) model and demonstrate that its extension from Single Diffusion Encoding (SDE) to Double Diffusion Encoding (DDE) solves the ill-posedness and increases the accuracy of the parameter estimation. Methods: We analyse theoretically the cumulant expansion up to fourth order in b of SDE and DDE signals. Additionally, we perform in silico experiments to compare SDE and DDE capabilities under similar noise conditions. Results: We prove analytically that DDE provides invariant information non-accessible from SDE, which makes the NODDIDA parameter estimation injective. The in silico experiments show that DDE reduces the bias and mean square error of the estimation along the whole feasible region of 5D model parameter space. Conclusions: DDE adds additional information for estimating the model parameters, unexplored by SDE, which is enough to solve the degeneracy in the NODDIDA model parameter estimation.Comment: 22 pages, 7 figure
    • …
    corecore