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Diffusion kurtosis imaging (DKI) is an extension of the popular diffusion tensor

imaging (DTI) technique. DKI takes into account leading deviations from Gaussian

diffusion stemming from a number of effects related to the microarchitecture and

compartmentalization in biological tissues. DKI therefore offers increased sensitivity to

subtle microstructural alterations over conventional diffusion imaging such as DTI, as

has been demonstrated in numerous reports. For this reason, interest in routine clinical

application of DKI is growing rapidly. In an effort to facilitate more widespread use of DKI,

recent work by our group has focused on developing experimentally fast and robust

estimates of DKI metrics. A significant increase in speed is made possible by a reduction

in data demand achieved through rigorous analysis of the relation between the DKI signal

and the kurtosis tensor based metrics. The fast DKI methods therefore need only 13 or

19 images for DKI parameter estimation compared to more than 60 for the most modest

DKI protocols applied today. Closed form solutions also ensure rapid calculation of most

DKI metrics. Some parameters can even be reconstructed in real time, which may be

valuable in the clinic. The fast techniques are based on conventional diffusion sequences

and are therefore easily implemented on almost any clinical system, in contrast to a

range of other recently proposed advanced diffusion techniques. In addition to its general

applicability, this also ensures that any acceleration achieved in conventional DKI through

sequence or hardware optimization will also translate directly to fast DKI acquisitions. In

this review, we recapitulate the theoretical basis for the fast kurtosis techniques and

their relation to conventional DKI. We then discuss the currently available variants of

the fast kurtosis techniques, their strengths and weaknesses, as well as their respective

realms of application. These range from whole body applications to methods mostly

suited for spinal cord or peripheral nerve, and analysis specific to brain white matter.

Having covered these technical aspects, we proceed to review the fast kurtosis literature

including validation studies, organ specific optimization studies and results from clinical

applications.
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INTRODUCTION

Microstructural sensitivity in MRI is most often obtained by
sensitizing the signal to the diffusion of water. In combination
with modeling, such data can yield specific microstructural
markers, but the data required to support such modeling is often
prohibitive in particular in a clinical context. A less data intense
strategy to obtain microstructural sensitivity in diffusion MRI
(dMRI) is the diffusion kurtosis imaging (DKI) framework [1]
which quantifies the leading deviation from Gaussian diffusion
in each image point. This deviation arises from the influence of
tissue microstructure on the water diffusion profile and is easily
visualized by plotting the log signal as function of b-value. This
is done in Figure 1 using data acquired along one direction in a
white matter region in normal human brain (circles). Here the
familiar log-linear signal decay is seen up to b ≈ 1 ms/µm2,
below which a diffusion tensor fit (solid red line) approximates
the signal very well. Extrapolation of this fit beyond b ≈ 1
ms/µm2 (dashed red line), however, clearly does not match
the observed signal. Conversely, the DKI fit (solid green line)
is seen to approximate the measured signal over the entire b-
value range shown, although it will diverge at sufficiently high
b-values. DKI thus allows quantification of the deviation from
log-linear signal decay caused by tissue microarchitecture and
compartmentalization. This deviation thereby indirectly provides
information about these tissue properties.

Compared to most other advanced dMRI techniques, DKI is
easily implemented. For this reason, and because of its increased
sensitivity to tissue microstructure compared to diffusion tensor
imaging (DTI), DKI has grown to be a popular dMRI method.
Nevertheless, DKI is not experimentally inexpensive, as typical
protocols consist of a few unweighted images for normalization
and two 30-direction shells at two non-zero b-values (typically 1.0
ms/µm2 and 2.0–2.5 ms/µm2) thus totaling 60–70 images [2].
This is current standard, although more data intense protocols
are not uncommon [3]. While most DKI protocols are too
lengthy for everyday clinical use, high quality data can be
acquired in a time frame considered reasonable for many clinical
and preclinical studies. Even so, the time required for post-
processing of DKI is significant, and both acquisition time and
data processing time limit its clinical application, especially in
patients with time sensitive ailments (e.g., stroke or trauma), or
patients with difficulties lying still, e.g., children.

The DKI method yields a wealth of parameters that can
be mapped on a voxel by voxel basis. Several of these DKI
metrics have been shown to detect subtle changes in brain tissue
structure. To briefly summarize, studies have shown DKI to have
potential in diagnostics of a number of diseases such as stroke
[4, 5], Alzheimer’s disease [6], multiple sclerosis [7], gliomas
[8, 9], and head trauma [10–12] (see also the review of this area
in Ostergaard et al. [13]). DKI is not only of clinical interest but
is also a valuable tool in basic neuroscience, and the method
has for example been employed in studies of natural alteration
of brain microstructure e.g., in the context of development and
aging [14, 15].

DKI is sensitive to microstructure generally, and therefore in
brain it can be used to study both gray matter (GM) and white

FIGURE 1 | Diffusion MRI data (circles) from a white matter region in human

brain acquired along one direction over the b-value range from 0 to 3 ms/µm2.

Fits obtained with DTI (solid red line, b = 0–1 ms/µm2) and DKI (green line, all

b-values) are shown. The signal deviation from the DTI signal prediction is

illustrated by extrapolating the DTI fit (the dashed red line) into the DKI regime

(b > 1 ms/µm2 ). Conversely, the DKI fit is seen to approximate the signal very

well.

matter (WM). However, in WM, DKI can be combined with
modeling to obtain some of the biophysical specificity of more
advanced dMRI modeling frameworks. One important example
of this is the white matter tract integrity (WMTI) technique
[2] which on the basis of a DKI data set provides detailed
information aboutmicrostructure of highly aligned fiber bundles,
such as intra- and extra-axonal diffusivities, axonal water fraction
(AWF), and the tortuosity, α, of the extra-axonal space.

Like DKI, WMTI has also been used to study the brain
in a wide range of contexts: normal brain development and
aging [16, 17], Alzheimer’s disease [18, 19], mild head trauma
[20], multiple sclerosis [21], autism [22], and stroke [4].
Validation studies comparing WMTI indices to histology and
electron microscopy [23–26] have largely confirmed the ability
of WMTI to detect microstructural changes in WM. While other
frameworks for DKI-based estimation of tissuemodel parameters
have been proposed [27, 28], a recent comparative study showed
WMTI to be the most widely applicable [27].

While WMTI was developed specifically for analysis of WM,
the DKI framework itself is almost without assumptions and
its applications are therefore not limited to brain imaging.
Consequently, interest in DKI for body imaging is growing [29]
with demonstrated applications in imaging of liver [30, 31],
kidney [32, 33], and prostate [34–36].

This short survey of the DKI literature documents the high
potential of DKI as a method to obtain sensitive markers
suitable for basic research (e.g., for the study of brain plasticity),
diagnostics and treatment monitoring. However, widespread
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clinical application of DKI and WMTI has yet to emerge. Two
major limitations that are most likely responsible for DKI not
being routinely used in the clinic have already been identified:
acquisition time and post-processing time. Lowering both of
these barriers has therefore been an important goal as methods
for fast DKI and WMTI would not only increase the clinical
applicability of DKI and WMTI, but also make possible more
widespread, routine exploration of DKI metrics by allowing
inclusion of DKI, at little additional cost, as a component of any
protocol for imaging of the brain or other organs. Furthermore,
such methods would facilitate high resolution preclinical studies
for characterization of animal models of disease or for validation
studies.

Here we review recent developments enabling fast kurtosis
imaging based on small data sets (13 or 19 images) and with
near-instant post-processing [37–42]. The review is structured
such that first the theoretical foundation of DKI and WMTI is
recapitulated briefly. For a more in-depth review of conventional
DKI we refer to Jensen and Helpern [43], Wu and Cheung
[44]. On this basis we then introduce the rapidly obtainable
DKI metrics used in fast kurtosis and discuss their relation
to conventional DKI definitions. Since a few variants of fast
kurtosis have been introduced we cover all of them and their
various area of application. Having covered the methodological
background we review the literature of fast DKI application
studies and discuss current efforts for method refinement and
potential future applications. All data shown was reused from the
cited papers from our group. The presented non-human data was
acquired at 9.4T (except from Figure 8, acquired at 16.4T) while
human brain data was acquired in normal volunteers at 3T. We
refer to the original publications for details on data acquisition
and analysis.

DIFFUSION KURTOSIS IMAGING
VARIANTS

Conventional DKI
The standard expression for the DKI signal is [1]:

log S(b, n̂)/S0 = −bninjDij +
1

6
b2D

2
ninjnknlWijkl + O(b3)

= −bD(n̂)+ 1

6
b2D

2
W(n̂)+ O(b3) (2.1.1)

= −bD(n̂)+ 1

6
b2D(n̂)2K(n̂)+ O(b3)

Here S0 = S(b = 0) is the unweighted signal used for normali-
zation and b is the diffusion weighting applied along a direction
n̂ =

(

nx, ny, nz
)

. The normalized signal is denoted S from here
on. Throughout, subscripts label Cartesian components (e.g., i=
x,y,z) and summation over repeated indices is assumed. D is the
diffusion tensor [45], and the kurtosis tensor W and the apparent
excess kurtosis K(n̂) are defined as in Jensen et al. [1]. Overbar
denotes mean value over diffusion directions, i.e., D = Tr(D)/3
is the mean diffusivity (Tr is the trace).

In the DKI analysis, the tensors D and W are estimated
by fitting Equation (2.1.1) to data acquired as described above

(with b-values sufficiently low so that the O(b3) terms can be
neglected and satisfying b ≤ 3/D(n̂)K(n̂) [46] so that the
DKI signal model Equation (2.1.1) does not diverge). From these
tensors, a wealth of metrics is available. For the diffusion tensor,
the most important metrics are D, fractional anisotropy (FA)
and radial and axial diffusivities. To obtain these, the diffusion
tensor is diagonalized to yield three pairs of eigenvectors v̂i and
eigenvalues λi (i = 1, 2, 3). The eigenvalues (diffusivities) are
sorted by size so that the primary eigenvector (v̂1) indicates the
direction of highest diffusivity (λ1), etc. The axial diffusivity is
then D|| = λ1 and radial diffusivity is D⊥ = (λ2 + λ3) /2.
The anisotropy of D is summarized by the FA due to Basser and
Pierpaoli [47]:

FA =
√

3

2

√

(

λ1 − D
)2 +

(

λ2 − D
)2 +

(

λ3 − D
)2

√

λ21 + λ22 + λ23

=
√

3

2

∥

∥D−DI
∥

∥

‖D‖ , (2.1.2)

where the double vertical bars ‖·‖ denote the Frobenius norm
and I is the rank-2 identity matrix. From the kurtosis tensor,
summary metrics can also be derived, the most important
parameter being the mean kurtosis (MK, K) [1]:

K = 1

4π

∫

S2

K(n̂)dn̂ = 1

4π

∫

S2

W(n̂)
D
2

D(n̂)2
dn̂ (2.1.3)

Other meaningful parameters can be extracted from the
kurtosis tensor. Similar to the directional diffusivities, the
kurtoses observed along (||) and orthogonal (⊥) to the primary
eigenvector direction have been introduced [3, 43, 48, 49]:

K|| = K(v̂1) (2.1.4)

K⊥ ≡ 1

2π

∫

S2

dn̂ δ(n̂ · v̂1)K(n̂)

= 1

2π

∫ 2π

0
dϕK(v̂2 cosϕ + v̂3 sinϕ)

where S2 is the sphere. These are known respectively as
(conventional) radial and axial kurtosis. Note that in contrast
to their diffusion tensor counterparts, they are not strictly
rotationally invariant. The reason for this behavior is that in
orthogonal fiber bundle crossings the diffusion eigenvalues may
be degenerate (i.e., for such a 3D fiber arrangement there is no
primary fiber direction and the diffusion tensor is isotropic) while
the apparent kurtosis can differ among the fiber directions due to
microstructural differences in the bundles [42]. Consequently, in
this thought-experiment noise will determine which eigenvector
will be deemed the primary direction thus causing the estimated
directional kurtosis values to vary between measurements. While
such fiber configurations are most likely rare this property
should nevertheless be kept in mind when employing directional
kurtosis metrics. Other definitions have been proposed and
the fast DKI counterparts rely on other definitions than those
presented in Equations (2.1.3) and (2.1.4). These will be discussed
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in Sections “Fast estimation of mean diffusivity and mean
kurtosis”, “Fast kurtosis estimation with increased experimental
robustness” and, “Axisymmetric DKI”.

In addition to the raw tensor metrics, D and W can also
provide metrics of white matter tract integrity (WMTI) based
on modeling described in Fieremans et al. [2]. The assumptions
and modeling choices that make estimation of these WMmetrics
possible are covered in the following section.

White Matter Tract Integrity from DKI
WMTI uses the estimated tensors D and W to estimate the (MR
detectable) axonal water fraction, and several compartmental
diffusivities. This analysis exploits the relation between the
tensors D and W and the WMTI parameters found by the
cumulant expansion of the expression for the dMRI signal from
a two-compartment system consisting of the extra-axonal space
(EAS) and an intra-axonal space (IAS) described as sticks with an
effective radius of zero, which is valid for the gradients employed
in acquiring typical clinical diffusion data. Diffusion in both the
EAS and the IAS is approximated with anisotropic Gaussian
diffusion, and because of the latter, the analysis is restricted
to areas of highly aligned WM. Water exchange is assumed to
be negligible over the experimental time window, and myelin
water is assumed not to contribute because of its large value of
TE/T2. A limited amount of dispersion of axons within the WM
bundle does not violate the Gaussian intra-axonal assumption,
but implies that the intra-axonal diffusion tensor has three non-
vanishing eigenvalues [2]. With these assumptions, the signal
expression for this two-compartment system becomes:

S(b, n̂) = f exp(−bn̂TDan̂)+ (1− f ) exp(−bn̂TDen̂) (2.2.1)

where f is the axonal water fraction (AWF from here on), Da

and De are the diffusion tensors belonging to the IAS and EAS
respectively. The form of these tensors is:

Da =





Da3 0 0
0 Da2 0
0 0 Da1



 , De =





De3 0 0
0 De2 0
0 0 De1



 (2.2.2)

where subscript numbers label the eigenvalues by magnitude in
descending order, implying that here the primary direction is
ẑ . From the cumulant expansion of this model, the measured
diffusion and kurtosis tensors D andW can be expressed in terms
of the model parameters. In this manner, the otherwise unspecific
DKI parameters yield approximations for specific biophysical
parameters: the AWF, IAS diffusivity (Da = Tr(Da)), parallel and
radial EAS diffusivities (De,|| = De,1 and De,⊥ = (De2 + De3) /2),
and the EAS tortuosity (α = De,||/De,⊥). Notably, the estimates
are only approximate, as the diffusion and kurtosis tensors
in principle do not supply sufficient information to estimate
all diffusivities and the axonal volume fraction because of the
confounding factors of axonal dispersion [50]. Additionally,
kurtosis based estimation of compartmental diffusivities yields
two solutions. This arises because the kurtosis is related to
the variance (“mean of square minus square of mean”) over
diffusivities [43] causing the square root to enter the analysis.

FIGURE 2 | Schematic representation of a white matter fiber bundle and its

biophysical properties accessible with the WMTI analysis framework.

For this reason, WMTI furthermore relies on the assumption
that intra-axonal diffusivity Da1 is smaller than extra-axonal
diffusivity De1 as argued in Fieremans et al. [2]. Figure 2

shows a schematic of this representation of a WM bundle
and the biophysical properties that may be estimated from
WMTI analysis. For further details on derivations and modeling
assumptions, the reader is referred to the original WMTI papers
[2, 51].

Fast Estimation of Mean Diffusivity and
Mean Kurtosis
The ability to rapidly estimatemean diffusivity andmean kurtosis
from only 13 images was presented in Hansen et al. [39, 40]. In
order to achieve this, a mean kurtosis definition was introduced
(W) which differs from the definition in Equation (2.1.3),
namely:

W = 1

4π

∫

S2

dn̂W(n̂)

= 1

5
Tr(W) (2.3.1)

= 1

5
(Wxxxx +Wyyyy +Wzzzz + 2Wxxyy + 2Wxxzz + 2Wyyzz)

This definition differs from the conventional MK definition in
Equation (2.1.3) in that it is based on the spherical average of the
apparent tensor kurtosisW(n̂):

W(n̂) = K(n̂)
D(n̂)2

D
2

, (2.3.2)

instead of K(n̂). For this reason we also refer toW as the mean of
the kurtosis tensor (MKT). This definition is compactly written
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FIGURE 3 | The nine encoding directions required for fast DKI illustrated as

unit vectors. The directions are listed explicitly in Table 1.

as one fifth of the trace (Tr) of the kurtosis tensor W. The factor
of one fifth stems from the spherical average [52]:

1

4π

∫

S2

dn̂ ninjnknl =
1

15
(δijδkl + δikδjl + δilδjk) ≡

1

5
Iijkl

(2.3.3)

where I is the fully symmetric isotropic rank 4 tensor [53]. Hence,
W represents the isotropic part of the kurtosis tensor [39]. The
advantage of this mean kurtosis definition is apparent from the
last line in Equation (2.3.1) which states that W is proportional
to a linear combination of six tensor elements, and this linear
combination can be obtained frommeasurements without fitting
to the data. For the measurements, the “pure” tensor elements
(Wiiii) can be probed directly, whereas the mixed elements
(Wiijj , i 6= j) requires the combination of two directions for
each to cancel cross terms, see Hansen et al. [39] for details.
Therefore, a total of nine directions is needed to calculate W.
These directions are illustrated in Figure 3, where it is readily
seen that this encoding scheme does not sample the sphere very
efficiently; the high estimation quality obtained with this scheme
rests entirely on the relations introduced shortly. The directions
are also listed in Table 1 which also defines the notation used in
the following equations.

For data acquired along these directions (i = 1,2,3) the
following holds [39]:

1

15

(

3
∑

i=1

log S(b, n̂(i))+ 2

3
∑

i=1

log S(b, n̂(i+))+ 2

3
∑

i=1

log S(b, n̂(i−))

)

= −bD+ 1

6
b2D

2
W (2.3.4)

With an independent estimate of D, Equation (2.3.4) allows
estimation of W without data fitting, thus eliminating both

TABLE 1 | The nine directions in the compact notation (leftmost column) used in

the manuscript and stated as normalized vectors.

Direction x-component y-component z-component

n̂(1) 1 0 0

n̂(1+) 0 1/
√
2 1/

√
2

n̂(1−) 0 1/
√
2 −1/

√
2

n̂(2) 0 1 0

n̂(2+) 1/
√
2 0 1/

√
2

n̂(2−) 1/
√
2 0 −1/

√
2

n̂(3) 0 0 1

n̂(3+) 1/
√
2 1/

√
2 0

n̂(3−) 1/
√
2 −1/

√
2 0

the time consuming post-processing and the pitfalls associated
with it [54–56]. The mean diffusivity D can be estimated from
data acquired along three orthogonal directions at a single b-
value (and b = 0), but is improved by taking into account the
kurtosis term in the analysis [57], which can be done if the 3
directions are acquired also at a second higher b-value shell.
In this manner a closed form solution for D [58] is obtained
taking into account the directional kurtosis for high fidelity
estimation [57]. The strategy proposed in Hansen et al. [39]
thus implements the estimation of D based on data acquired at
an intermediate b-value along the three main directions, n̂(1),
n̂(2) and n̂(3), which are already contained in the nine directions
in Table 1. Thus, the “1-3-9 approach” for fast estimation of
D and W is to acquire one b=0 image, 3 images at b1 =1.0
ms/ µm2 along the x,y,z directions (n̂(i), i = 1,2,3), and nine
images acquired at b2 = 2.5 ms/µm2 along the directions listed
in Table 1.

The scaling factor of D(n̂)2/D
2
in Equation (2.3.2) generally

depends on direction and as such will affect the spherical average
so that K = W only for isotropic systems. From the definitions
therefore, K and W are expected to deviate the most in highly
anisotropic tissue. It is natural therefore to evaluate whether the
rapidly obtainable tensor based mean kurtosis (W) offers similar
contrast to the conventional MK. This is illustrated in Figure 4

which shows typical DTI and DKI parameters mapped in fixed
rat brain at an in-plane resolution of 100 µm x 100 µm to
allow contrast comparison in specific brain regions such as the
subfields of the hippocampus. Overall, the parameters can be seen
to provide vastly different contrast, except for K and W which
are seen to be almost indistinguishable although a few blank
pixels are seen in the W map due to noise (see also comments
on preprocessing below). The level of agreement between K and
W presented in Figure 4 has been quantified (linear correlations
exceed 0.9 in most cases but will depend on the data foundation)
and demonstrated in both fixed and live brain in a number of
studies [59–61] and also in fixed kidney [62]. In the diseased
brain, the 1-3-9 method has been validated in an animal model
of stroke [63, 64] and was found to yield diffusion and kurtosis
lesions in good agreement with conventional DKI. Similarly,
strong correlations between the diffusion-kurtosis stroke lesion
mismatch obtained from 1-3-9 and conventional DKI was shown
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FIGURE 4 | Example maps of typical DTI and DKI parameters in fixed rat brain. The two mean kurtosis definitions are shown and seen to provide similar contrast.

Figure adapted from Hansen and Jespersen [37] with permission.

FIGURE 5 | Examples of estimates of mean diffusivity (Top) and W (Bottom). In each row estimates were obtained (left to right) from a large DKI data set, a 1-3-9

acquisition, and a 1-9-9 data set. Figure adapted from Hansen et al. [41] with permission.

[63]. Additionally, W was found to be the most sensitive
parameter for revealing acute ischemic injury in an analysis also
including axial and radial kurtosis [64]. This is important because
W can be reconstructed almost instantly once acquisition is
complete, making this most sensitive parameter immediately
available e.g., for clinical decision making. In the same study

[64], the contrast to noise ratio (CNR) of W estimated from fast
DKI was found to be significantly higher than for conventional
DKI. Importantly, the fast DKI CNR efficiency (CNR per unit
scan time) was shown to be twice that of conventional DKI.
The authors conclude that the fast kurtosis method captures
heterogeneous diffusion and kurtosis lesions in acute ischemic

Frontiers in Physics | www.frontiersin.org 6 September 2017 | Volume 5 | Article 40

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Hansen and Jespersen Recent Developments in Fast Kurtosis Imaging

stroke, and thus is suitable for translational applications. The
rapidly obtainable W is therefore by now established as a
biomarker offering the same information as the conventional
K in normal tissue and stroked brain. Strictly speaking, the
methods await similar validation in other pathologies but W is
now recognized as an independent marker and not merely a
rapidly obtainable surrogate for K. Recent clinical studies have
employed the 1-3-9 method for glioma grading [65], for studying
the effect of crack cocaine addiction [66], and in mild traumatic
brain injury patients [12]. Preliminary results in stroke patients
was presented in Li et al. [67] obtained using a combination of the
1-3-9 technique and the simultaneous multislice imaging (SMS)
technique [68].

Fast Kurtosis Estimation with Increased
Experimental Robustness
The 1-3-9 method relies heavily on the nine direction scheme
being precisely met. Encoding may, however, be imperfect
causing deviations from the encoding scheme required for
Equation (2.3.4) to hold. Such encoding errors may have a
number of causes such as gradient non-linearities, eddy currents,
contributions from gradient cross-terms and coregistration due
to subject movement. While not explored initially, subsequent
analysis of these effects showed the 1-3-9 scheme to be quite
sensitive to severe encoding deviations. A simple remedy was
demonstrated in Hansen et al. [41] where the 1-3-9 scheme was
extended so that all of the nine directions in Table 1 are acquired
at the two non-zero b-values, b1 and b2. This so-called 1-9-9
version of fast DKI achieves increased experimental robustness
by forming Equation (2.3.4) at two distinct b-values, b1 and b2:

A1 ≡
1

15

(

3
∑

i=1

log S(b1, n̂
(i))+ 2

3
∑

i=1

log S(b1, n̂
(i+))

+ 2

3
∑

i=1

log S(b1, n̂
(i−))

)

= −b1D+ 1

6
b21D

2
W

A2 ≡
1

15

(

3
∑

i=1

log S(b2, n̂
(i))+ 2

3
∑

i=1

log S(b2, n̂
(i+))

+ 2

3
∑

i=1

log S(b2, n̂
(i−))

)

= −b2D+ 1

6
b22D

2
W (2.3.5)

producing a set of two equations with two unknowns, D and W,
for which closed for solutions are readily obtained so that the
1-9-9 estimate for D is:

D199 =
(

b21A2 − b22A1
)

/
(

b1b
2
2 − b21b2

)

(2.3.6)

and forW:

W199 = 6b1b2
(

A1b2 − A2b1
) (

b1 − b2
)

/
(

A1b
2
2 − A2b

2
1

)2

(2.3.7)
For precise encoding, i.e., when effective b-values are constant
among directions on each encoding shell and encoding directions
follow the prescribed directions, the 1-3-9 and 1-9-9 schemes

produce very similar appearingmaps as shown in Figure 5, where
estimates of D and W from a full DKI data set can be compared
to estimates obtained with 1-3-9 and 1-9-9 in the same normal
human brain. The effect of the 1-9-9 method’s increased data
foundation is apparent when comparing the schemes’ robustness
to experimental imperfections: numerical analysis reveals that
the 1-9-9 scheme has precision similar to nonlinear least squares
(NLS) fitting to large data sets, vastly outperforming the 1-
3-9 scheme [41]. The effects of imperfect encoding was also
addressed in a series of simulations showing that the 1-9-9
estimation quality (evaluated as the %-error compared to the
ground truth value) remains below 10% even when b-values
vary by as much as 10% among directions and the within-
shell encoding directions deviate up to 10◦ from the prescribed
directions. For the 1-3-9 scheme, these conditions cause estimates
to deviate on the order of 15%. These results indicate that the 1-
9-9 method is robust to most real-world encoding imperfections
and even to effects from subject movement, where coregistration
will cause b-matrices to require rotation. Nevertheless, a post-hoc
correction scheme was also proposed and demonstrated to repair
effects of even severe encoding faults [41].

Recommended b-values for both the 1-3-9 and 1-9-9 schemes
are b1 ≈ 1 ms/µm2 and b2 ≈ 2.5 ms/µm2, but the experimental
and numerical b-value optimization in Hansen et al. [41] showed
that precise matching to these two b-values was not critical. These
values are achievable on most if not all gradient systems while
also keeping the echo time sufficiently short to retain good SNR
even at b2. The analysis in Hansen et al. [41] showed that the
recommended b-values are (perhaps surprisingly) suitable for
both in vivo (37◦C) and ex vivo (21◦C) work. These b-values were
used with the 1-9-9method in an animal model of stroke, where a
relaxation-based normalizationmethod was introduced to enable
automatic segmentation of kurtosis lesions [69]. Nevertheless,
optimal b-values may vary between brain regions, and example
data sets for region specific b-value optimization are freely
available as described in Hansen et al. [70].

Increasing the number of data points from 13 (1-3-9) to 19
(1-9-9) also makes possible estimation of the full diffusion tensor
(with fitting) from which all DTI metrics can then be calculated.
As a rapid alternative, FA estimation from 1-9-9 data was also
proposed based on the variance (var) ofD(n̂) over the 9 sampling
directions (the expression is exactly FA for complete sampling of
the sphere):

FA199 =
√

3

2

var(D(n̂))

var(D(n̂))+ 6/15D
2

(2.3.8)

Here the D
(

n̂
)

values over the nine directions are calculated
using both non-zero b-values as in Jensen et al. [58] so that the
directional kurtosis is included to improve estimation [57]. FA
maps obtained in this manner were found to correlate strongly
(average correlation was 0.77 ± 0.04 across three subjects)
with ground truth FA from a large data set. Code enabling
automatic parameter map calculation from 1-3-9 and 1-9-9 data
during image reconstruction on Siemens systems is available as
described in Hansen et al. [41]. The data examples shown in
Figures 4, 5 were produced from non-preprocessed data and so
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the maps in Figure 5 illustrate the map quality one might expect
to achieve with online parameter calculation. For offline dMRI
data preprocessing and analysis (including DKI and WMTI)
a number of toolboxes are available e.g., Diffusion Kurtosis
Estimator (DKE: http://academicdepartments.musc.edu/cbi/dki/
dke.html), the Dipy library in python [71] (http://nipy.org/
dipy/), MRTrix (http://www.mrtrix.org), some of which also
include estimation ofW and kurtosis fractional anisotropy (KFA,
see Equation (2.5.5) and the related text).

Recent work on efficient experimental designs for estimating
the isotropic part of higher-order tensors [72], suggests that the 9
directions of the 1-3-9 and 1-9-9 designs can be reduced to 7 for
an even more economical version of fast mean kurtosis imaging.

Axisymmetric DKI
As mentioned in the introduction, DKI parameters other than
mean kurtosis are available, e.g., the kurtosis along the primary
eigenvector (axial kurtosis) and perpendicular to it (radial
kurtosis). Furthermore, modeling based WM characterization
such as WMTI provides other valuable markers, but requires
knowledge of the full diffusion and kurtosis tensors. It is therefore
desirable to be able to estimate these valuable markers from
fast protocols. Since the number of free parameters in the
conventional DKI signal equation amounts to 22 (Equation
2.1.1), the 1-9-9 protocol does not provide enough data points
to support estimation of D and W from fitting. For estimation
of D and W from reduced data sets (say a 1-9-9 acquisition,
but in principle it could be other low angular resolution DKI
acquisitions), a substantial reduction of parameters in the DKI
signal expression would be needed. An effective strategy to
achieve such a reduction was proposed in Hansen et al. [42], and
builds on the observation that if the system is assumed to possess
axial symmetry, the apparent kurtosis W(n̂) can be expressed
by only three independent parameters: letting ẑ be parallel to
the symmetry axis, W(n̂) is characterized by W, W|| = W(ẑ)
(axial kurtosis), and W⊥ (radial kurtosis). Stated in terms of the
diffusion tensor eigenvectors (v̂1, v̂2 , v̂3 in decreasing order of
the eigenvalues as above), the tensor-based directional kurtosis
parameters are defined to be:

W⊥ ≡ 1

2π

∫

S2

dn̂ δ(n̂ · v̂1)W(n̂) = 1

4

(

W(v̂2)+W(v̂3)

+W
(

(v̂2 + v̂3)/
√
2
)

+W
(

(v̂2 − v̂3)/
√
2
))

W|| = W(v̂1) (2.5.1)

Comparing these definitions to the conventional directional
kurtosis parameter definitions in Equation (2.1.4) shows K|| =
(

D
2
/λ21

)

W|| so that only for isotropic media K|| = W||.

Rescaling of the axial and radial tensor kurtosis is convenient and
causes the axial kurtosis definitions to become identical but radial
kurtosis as defined in Equation (2.5.1) is in general different from
the convention in Equation (2.1.4), unless there is axial symmetry
[42].

The assumption of axial symmetry requires the axis of
symmetry to be specified with respect to the lab frame, which
adds two angles, resulting in a total of only 5 parameters
needed to fully describe an axisymmetric kurtosis tensor. Under

axisymmetry, D and W share their symmetry axis so that D
only adds two parameters. Finally, signal normalization adds
one parameter, producing a total of eight free parameters for
axisymmetric DKI [42]. Even in regions where axial symmetry
is unlikely to hold in reality, the simplified DKI signal expression
thus obtained yields reliable estimates of mean and directional
kurtosis and diffusion metrics [42]. Not only does this open
the possibility of estimation of all DTI and DKI metrics
from small DKI data sets such as those acquired with the
1-9-9 scheme, the axisymmetric DKI framework also allows
direct (no fitting) estimation of tensor-based directional kurtosis
parameters in regions with a well-defined axis of symmetry
(i.e., known pricipal axis) such as large peripheral nerves and
spinal cord. This is readily seen in Equation (2.5.1) for W|| =
W(ẑ) and from the rightmost expression for W⊥. Software
for axisymmetric DKI analysis is freely available on our group
homepage: http://cfin.au.dk/cfinmindlab-labs-research-groups/
neurophysics/software.

Fast Estimation of White Matter
Biomarkers Using Axisymmetic DKI
Axisymmetric DKI makes it possible to estimate D and W from
small data sets. A natural next step is to use this framework
to provide a fast variant of the technique for assessment of
WM tract integrity metrics (WMTI) proposed in Fieremans
et al. [2, 51]. In its original form, WMTI adds an analysis
step so that in addition to the data acquisition and data
processing related to conventional DKI, WMTI also requires
a rather time-consuming pixel-by-pixel estimation procedure
including numerical optimization. With the assumption of axial
symmetry and fully aligned axons, both the data requirement
and computational load can be reduced significantly. This is
achieved by establishing closed form solutions for all WMTI
parameters based on the axisymmetric DKI parameters directly.
In this manner, only one optimization procedure is needed for
the WMTI analysis, the initial fitting to Equation (2.1.1) or its
axisymmetric counterpart. The expressions for the biophysical
parameters that describe the axonal system are obtained from this
relationship for 2-compartment Gaussian systems [43]:

D(n̂) = f Da(n̂)+ (1− f )De(n̂)

W(n̂)D
2 = 3f (1− f )(Da(n̂)− De(n̂))

2 (2.5.2)

When evaluated along the radial and axial directions and with
averaging over all directions, these general expressions yield
directional diffusivities and kurtoses from which expressions for
AWF = f , Da, De,⊥, and De,|| can be derived [38]:

D⊥ = (1− f )De,⊥ (a)

D|| = f Da + (1− f )De,|| (b)

W⊥D
2 = 3f (1− f )De,⊥

2 (c)

W||D
2 = 3f (1− f )(Da − De,||)

2 (d)

WD
2 = 3f (1− f )

[

De,⊥
2 + 1

15
(De,|| − Da − De,⊥)

(

7De,⊥

+ 3(De,|| − Da)
)

]

(e) (2.5.3)
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where it was used thatDa⊥ = 0 for parallel sticks. It is readily seen
that the left-hand sides of Equation (2.5.3) can be determined
using parameters obtained directly from an axially symmetric
DKI fit as well as from a general DKI fit.

Of the five equations in Equation (2.5.3), only 4 of the
equations are actually independent (i.e., they have only four
unknowns due to the assumption of parallel axons with radius
zero), so that one equation can be omitted. In Hansen et al. [42]
W was found to be more robustly estimated from 1-9-9 thanW||.
We therefore advice to omit Equation (2.5.3d) which contains
the slightly noisier W||. In this way, closed form expressions for
the WMTI parameters can be established based on Equations
(2.5.3a,b,c,e):

f = AWF =
(

1+ 3D2
⊥

/

W⊥D̄
2
)−1 (a)

De,⊥ = D⊥
/(

1− f
)

(b)

De,|| = D||−
2

3

f

1− f



D⊥±

√

15
(

1− f
)

4f
D̄2W̄ − 5D2

⊥



 (c)

Da = D|| −
2

3



D⊥ ∓

√

15
(

1− f
)

4f
D̄2W̄ − 5D2

⊥



 (d)

α = De,||
/

De,⊥ (e) (2.5.4)

These expressions clearly show the existence of a sign ambiguity
which affects the estimates of De,|| (and consequently α) and Da

[2]. Determining which of these two “branches” yields physically
correct parameter estimates has been subject of some debate [38,
73, 74] and is not yet fully resolved. In Hansen et al. [38] affected
parameters are reported for both branches. The solutions for
the two branches are much more obvious than in conventional
WMTI, where the sign choice is only known to be stable over
diffusion encoding directions for the branch defined by Da ≤
De,|| [2]. WMTI analysis based on modest data makes it feasible
to experimentally investigate the unresolved branch duality—e.g.,
using data acquisitions employing varying diffusion times as in
Jespersen et al. [73] which would have been prohibitively time
consuming with conventional WMTI. Similarly, the increase in
acquisition speed facilitates high resolution data acquisitions for
validation purposes or for in vivo applications. High resolution in
vivoWMTI based on the 1-9-9 fast DKI protocol is demonstrated
in Figure 6 using one of four rats analyzed in Hansen et al.
[38]. The advantage of the fast WMTI techniques is evident
as the low data requirement allows whole brain coverage at an
isotropic resolution of 300 µm to be acquired in 1 h. For ex vivo
studies, e.g., for validation studies with subsequent histological
analysis, the fast axisymmetric WMTI method enables studies
at even higher resolution with high SNR with substantially
shorter acquisition times than required for conventional
WMTI.

When abandoning the assumption of fully parallel axons,
the relationships between the measured diffusion and kurtosis
metrics and the microstructural parameters will also involve
parameters characterizing the orientation distribution of the
axons (fODF) [75]. For axially symmetric systems specifically,
these are p2 and p4, the two lowest nontrivial Legendre expansion

coefficients of the fODF [73]. Hence in general, there are
more unknowns than equations. However, if a one parameter
fODF, such as the Watson distribution, can be assumed, p2
and p4 become interdependent and the number of unknowns
equals the number of equations, facilitating fast axisymmetric
WMTI in the presence of dispersion [73]. Figure 7A (upper
row) shows estimates of the time-dependent dispersion [Watson
concentration parameter κ (kappa)] of both branches (labeled +
and−, shown on the left and right, respectively) measured using
such an approach with data acquired from a stimulated echo
diffusion-weighted sequence in four regions of interest (ROIs) in
in pig spinal cord white matter. The data is from Jespersen et
al. [73] with ROI labels matching that work. Figure 7B (lower
row) plots time dependence of intra-axonal diffusivity of both
branches (again + branch on the left and − branch on the
right). As argued in Jespersen et al. [73], these results indicate
the most likely choice to be the plus branch Da > De,|| for
this data set. In this manner, the framework allows analysis of
time dependence of microstructural parameters in both branches
in white matter providing further insight into the branch
choice.

Other metrics suitable for WM characterization are available
from DKI, e.g., the kurtosis fractional anisotropy (KFA)
introduced in Hansen et al. [39] and Jespersen [76] in complete
analogy to FA (Equation 2.1.2):

KFA =
∥

∥W−WI
∥

∥

‖W‖ (2.5.5)

where double bars ‖·‖ signify the Frobenius norm of the tensor
and I is the fully symmetric isotropic tensor. This metric
describes the ratio of the size of the anisotropic part of W to
the Frobenius norm of the full W and thus assumes values in the
range 0–1 without the need for rescaling to this range as done for
FA (Equation 2.1.2). KFA can be estimated in any region but is
likely to be of most interest in anisotropic tissues and in regions
where more than one dominant fiber orientation exists. KFA was
investigated using simulations and human brain data in Hansen
and Jespersen [37] and Glenn et al. [61] and found to provide
contrast in regions where complex WM fiber composition causes
the FA to vanish, manifesting as dark bands in the FA maps
in Figure 8. This is because D cannot resolve more than one
primary direction and is related to the well-known crossing fiber
problem in DTI. Since KFA does not vanish when 2 or 3 fiber
bundles cross, KFA may aid in identifying regions where low FA
is due to fiber complexity. The maps from normal human brain
shown in Figure 8 allow comparison of FA and KFA contrast
in three consecutive slices. Evidently, KFA provides a different
contrast than FA. Such additional information from W may be
used to increase the robustness of diffusion tensor tractography
in complex fiber arrangements. In Hansen and Jespersen [37]
KFA was explored further using data from various model systems
and KFA estimation by proxy was tested. With sufficient SNR,
the proxy was found to agree very well with true KFA even for
estimates based on a 1-9-9 data set. However, the SNR required
(>100) for this strategy is unrealistic for practical purposes. A
strategy for KFA estimation from small data sets based on an
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FIGURE 6 | Example of three WMTI parameters mapped in an in vivo rat brain using axisymmetric WMTI analysis of a 1-9-9 data set. Parameters are shown mapped

onto b = 0 data in two orthogonal slice orientations. Data was acquired at 300 µm isotropic resolution.

axisymmetric W was evaluated in Hansen et al. [38], but here
KFA contrast deteriorates due to the symmetry imposed on W.
At present, therefore, KFA can only be reliably estimated based
on conventional DKI acquisitions and post-processing yielding
the full W tensor with no symmetry constraints.

Summary of Parameter Definitions
In addition to allowing fast estimation, the tensor-based kurtosis
metrics covered above also bring DKI metrics onto a form more
analogous to their DTI counterparts. This feature is evident
in Table 2 which summarizes the definitions for each of the
corresponding parameters derived from D and W. Note that the
different ranks of D and W cause some definitions to differ by a
scaling factor, nevertheless the analogy is obvious in most cases
with the notable exception being radial kurtosis in the principal
diffusion tensor frame, which cannot be formed from the two
non-primary axis directions alone but also contains a crossterm
(Wxxyy). For completeness, we also note that other mean kurtosis
definitions than those shown in Table 2 have been proposed such
as the generalized kurtosis (GK) and the generalized kurtosis of
the norm (GKN) [77] which reflect the kurtosis of the diffusion
propagator obtained from q-space data based on concepts from
multivariate statistics [78].

FUTURE DIRECTIONS FOR THE FAST
KURTOSIS TECHNIQUES

Imaging of tissue microstructure has been a strong motivation
for diffusion MRI research since the technique was introduced.
Since then, studies aimed at improving our ability to image tissue
microstructure have focused on understanding cellular-level

diffusion properties by MR microscopy in an effort to inform
modeling [79–85], and modeling aimed at extracting specific
cytoarchitectural measures [86, 87]. A common limitation of
these methods is the requirement for strong gradients. In
contrast, DKI yields valuable reporters of tissue microstructure
(although most frequently unspecific) while remaining feasible
on clinical systems, even those with modest gradient capability.
However, acquisition and post-processing time are often limiting
factors for clinical imaging and therefore may impede routine
clinical application of DKI. Therefore, rapid DKI acquisitions
with fast post-processing are important for further clinical
adaptation of DKI. Preclinically, the mentioned time constraints
are perhaps not as severe. However, the low data requirement
of the 1-3-9/1-9-9 protocols enables higher spatial resolution
or higher SNR in the same (or less) scan time as conventional
DKI acquisitions, which is certainly a significant benefit for
all areas of DKI related research. Furthermore, fast DKI may
become increasingly valuable in preclinical studies as imaging of
awake animals becomes more widely used to avoid physiological
perturbations caused by either inhaled or injected anesthesia
[88, 89]. Here, methods with modest data demand are preferable
to reduce animal stress and to afford data acquisition with gating
or even reacquisition if data is affected by movement.

Despite its sensitivity, DKI is microstructurally unspecific,
causing studies with comparison of DKI metrics to histology
to be needed to understand how disease related microstructural
alterations are reflected in DKI (regardless of metric definitions
and acquisition methods). Such studies have been carried out for
experimental stroke [5, 90], stress and depression [60, 91], and
kidney fibrosis [62] to name a few. Furthermore, studies have
been performed to elucidate the relation between DKI metrics
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FIGURE 7 | Plots of diffusion time dependence for dispersion (A) and intra-axonal diffusivity (Da, B) in both of the two WMTI solution branches (labeled + and −).

Data points are color coded to four ROIs in the pig spinal cord used for this experiment. The ROIs are labeled A, C, E, G in keeping with Jespersen et al. [73] where

the data was first presented. Figure adapted from Jespersen et al. [73] with permission.

FIGURE 8 | Comparison of diffusion tensor derived fractional anisotropy (FA, upper row) and kurtosis fractional anisotropy (KFA). Contrast differences are evident with

FA being uninformative in certain white matter regions (dark bands). Conversely, KFA remains informative in these regions. Figure adapted from Hansen and Jespersen

[37] with permission.

and tissue magnetic susceptibility [92, 93] with results suggesting
a susceptibility contribution in DKI metrics warranting further
investigation. Similarly, studies have been performed to optimize

diffusion sampling schemes for DKI [3] and to assess the DKI
metric reproducibility across field strengths [94]. Field strength
dependence was found to be most pronounced for KFA which
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TABLE 2 | Summary of the fast kurtosis metrics definitions and their DTI counterparts.

Diffusion tensor Kurtosis tensor

Mean D = Tr(D)
3 W = Tr(W)

5

Anisotropy FA =
√

3
2

∥

∥

∥
D−DI

∥

∥

∥

‖D‖ KFA =

∥

∥

∥
W−WI

∥

∥

∥

‖W‖
Axial/longitudinal D|| = D(v̂1) = λ1 W|| = W(v̂1) = Wzzzz (*)

Radial/orthogonal D⊥ = 1
2π

∫

S2
dn̂ D(n̂)δ(n̂ · v̂1) =

(

λ2 + λ3
)

/2

= 1
2 (Dxx + Dyy ) (*)

W⊥ ≡ 1
2π

∫

S2
dn̂ δ(n̂ · v̂1)W(n̂)

= 3
8 (Wxxxx +Wyyyy + 2Wxxyy ) (*)

Note the convenient similarity in these DTI and DKI metric definitions. (*), The latter identity holds in the frame with ẑ = v̂1.

is known to be more SNR dependent than the remaining DKI
metrics [37, 61]. In validation studies, high resolution is often
desirable in order to identify specific regions or sub-regions, since
varying response is sometimes seen in sub-regions as for example
in the hippocampus in relation to stress [60, 95]. In such cases,
the fast DKI methods are convenient to ensure reasonable scan
time for high resolution data acquisitions.

The fast kurtosis methods are already used for imaging of
experimental stroke [63, 64] and with the developments in
Hansen et al. [38, 42], axial and radial kurtosis can also be
investigated from fast DKI data along with WMTI parameters,
e.g., for detection of axonal beading [96]. Fast kurtosis imaging
is also convenient for studies of the diffusion time dependence of
DKI and WMTI parameters. Such experiments are expected to
provide a deeper understanding of the WMTI branch ambiguity
explored in Hansen et al. [38] by making use of the theoretically
expected diffusion time dependence [73].

An intriguing prospect of the fast DKI methods is the
combination with SNR-efficient, rapid imaging techniques such
as simultaneous multislice imaging (SMS) [68]. Combined with
slice dithered enhanced resolution (gSlider), SMS can in principle
be used to acquire diffusion MRI with sub-millimeter resolution
on clinical systems, although so far demonstrations have
used non-standard, high-performance gradient sets [97]. The
combination of these fast imaging techniques and fast kurtosis
methods would make it feasible to acquire high resolution DKI
and WMTI data sets in clinically feasible acquisition times and
might even be used for acquisition of time series data so that
1-9-9 data sets can be acquired with high (sub-minute) sliding
window temporal resolution. Such data sets may then form the
basis for analysis with the presented techniques, yielding time
series data of DKImetrics (e.g., mean, radial and axial kurtosis for
use in the study of GM plasticity [98]) and WM biomarkers for
high sensitivity studies of WM plasticity [99, 100]. Other future
applications might include combination of the 1-9-9 framework
with diffusion weighted spectroscopy. With such data sets from

cell-specific reporter molecules, such as NAA for neurons or
myo-inositol for glia, the intra-cellular environment could be
selectively probed to non-invasively assess cellular mechanisms
in a number of neurological diseases, e.g., stroke as done in
Shemesh et al. [101].

In conclusion, DKI is a non-invasive imaging technique with
high sensitivity to microstructural alterations in biological tissue
and has demonstrated value in a number of neuroscientific
and clinical contexts. Methods now exist which enable rapid
estimation of the full range of DKI parameters facilitating routine
clinical use of DKI and WMTI.
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