5 research outputs found
Inflammatory monocytes damage the hippocampus during acute picornavirus infection of the brain
Abstract Background Neuropathology caused by acute viral infection of the brain is associated with the development of persistent neurological deficits. Identification of the immune effectors responsible for injuring the brain during acute infection is necessary for the development of therapeutic strategies that reduce neuropathology but maintain immune control of the virus. Methods The identity of brain-infiltrating leukocytes was determined using microscopy and flow cytometry at several acute time points following intracranial infection of mice with the Theiler's murine encephalomyelitis virus. Behavioral consequences of immune cell depletion were assessed by Morris water maze. Results Inflammatory monocytes, defined as CD45hiCD11b++F4/80+Gr1+1A8-, and neutrophils, defined as CD45hiCD11b+++F4/80-Gr1+1A8+, were found in the brain at 12 h after infection. Flow cytometry of brain-infiltrating leukocytes collected from LysM: GFP reporter mice confirmed the identification of neutrophils and inflammatory monocytes in the brain. Microscopy of sections from infected LysM:GFP mice showed that infiltrating cells were concentrated in the hippocampal formation. Immunostaining confirmed that neutrophils and inflammatory monocytes were localized to the hippocampal formation at 12 h after infection. Immunodepletion of inflammatory monocytes and neutrophils but not of neutrophils only resulted in preservation of hippocampal neurons. Immunodepletion of inflammatory monocytes also preserved cognitive function as assessed by the Morris water maze. Conclusions Neutrophils and inflammatory monocytes rapidly and robustly responded to Theiler's virus infection by infiltrating the brain. Inflammatory monocytes preceded neutrophils, but both cell types were present in the hippocampal formation at a timepoint that is consistent with a role in triggering hippocampal pathology. Depletion of inflammatory monocytes and neutrophils with the Gr1 antibody resulted in hippocampal neuroprotection and preservation of cognitive function. Specific depletion of neutrophils with the 1A8 antibody failed to preserve neurons, suggesting that inflammatory monocytes are the key effectors of brain injury during acute picornavirus infection of the brain. These effector cells may be important therapeutic targets for immunomodulatory or immunosuppressive therapies aimed at reducing or preventing central nervous system pathology associated with acute viral infection.</p
Dual Role of MyD88 in Rapid Clearance of Relapsing Fever Borrelia spp.
Relapsing fever Borrelia spp. undergo antigenic variation, achieve high levels in blood, and require rapid production of immunoglobulin M (IgM) for clearance. MyD88-deficient mice display defective clearance of many pathogens; however, the IgM response to persistent infection is essentially normal. Therefore, MyD88(−/−) mice provided a unique opportunity to study the effect of nonantibody, innate host defenses to relapsing fever Borrelia. Infected MyD88(−/−) mice harbored extremely high levels of B. hermsii in the blood compared to wild-type littermates. In the comparison of MyD88(−/−) mice and B- and T-cell-deficient scid mice, two features stood out: (i) bacterial numbers in blood were at least 10-fold greater in MyD88(−/−) mice than scid mice, even though the production of IgM still occurred in MyD88(−/−) mice; and (ii) many of the MyD88(−/−) mice were able to exert partial clearance, although with delayed kinetics relative to wild-type mice, a feature not seen in scid mice. Further analysis revealed a delay in the IgM response to lipoproteins expressed by the original inoculum; however, by 6 days of infection antibodies were produced in MyD88(−/−) mice that could clear spirochetemia in scid mice. While these results indicated that the production of IgM was delayed in MyD88(−/−) mice, they also point to a second, antibody-independent role for MyD88 signaling in host defense to relapsing fever Borrelia. This second defect was apparent only when antibody levels were limiting
Dysregulated ribonucleoprotein granules promote cardiomyopathy in RBM20 gene-edited pigs
Ribonucleoprotein (RNP) granules are biomolecular condensates-liquid-liquid phase-separated droplets that organize and manage messenger RNA metabolism, cell signaling, biopolymer assembly, biochemical reactions and stress granule responses to cellular adversity. Dysregulated RNP granules drive neuromuscular degenerative disease but have not previously been linked to heart failure. By exploring the molecular basis of congenital dilated cardiomyopathy (DCM) in genome-edited pigs homozygous for an RBM20 allele encoding the pathogenic R636S variant of human RNA-binding motif protein-20 (RBM20), we discovered that RNP granules accumulated abnormally in the sarcoplasm, and we confirmed this finding in myocardium and reprogrammed cardiomyocytes from patients with DCM carrying the R636S allele. Dysregulated sarcoplasmic RBM20 RNP granules displayed liquid-like material properties, docked at precisely spaced intervals along cytoskeletal elements, promoted phase partitioning of cardiac biomolecules and fused with stress granules. Our results link dysregulated RNP granules to myocardial cellular pathobiology and heart failure in gene-edited pigs and patients with DCM caused by RBM20 mutation