36 research outputs found

    Constraints on porosity and mass loss in O-star winds from modeling of X-ray emission line profile shapes

    Get PDF
    We fit X-ray emission line profiles in high resolution XMM-Newton and Chandra grating spectra of the early O supergiant Zeta Pup with models that include the effects of porosity in the stellar wind. We explore the effects of porosity due to both spherical and flattened clumps. We find that porosity models with flattened clumps oriented parallel to the photosphere provide poor fits to observed line shapes. However, porosity models with isotropic clumps can provide acceptable fits to observed line shapes, but only if the porosity effect is moderate. We quantify the degeneracy between porosity effects from isotropic clumps and the mass-loss rate inferred from the X-ray line shapes, and we show that only modest increases in the mass-loss rate (<~ 40%) are allowed if moderate porosity effects (h_infinity <~ R_*) are assumed to be important. Large porosity lengths, and thus strong porosity effects, are ruled out regardless of assumptions about clump shape. Thus, X-ray mass-loss rate estimates are relatively insensitive to both optically thin and optically thick clumping. This supports the use of X-ray spectroscopy as a mass-loss rate calibration for bright, nearby O stars.Comment: 20 pages, 20 figures. Accepted by Ap

    An `Analytic Dynamical Magnetosphere' formalism for X-ray and optical emission from slowly rotating magnetic massive stars

    Get PDF
    Slowly rotating magnetic massive stars develop "dynamical magnetospheres" (DM's), characterized by trapping of stellar wind outflow in closed magnetic loops, shock heating from collision of the upflow from opposite loop footpoints, and subsequent gravitational infall of radiatively cooled material. In 2D and 3D magnetohydrodynamic (MHD) simulations the interplay among these three components is spatially complex and temporally variable, making it difficult to derive observational signatures and discern their overall scaling trends.Within a simplified, steady-state analysis based on overall conservation principles, we present here an "analytic dynamical magnetosphere" (ADM) model that provides explicit formulae for density, temperature and flow speed in each of these three components -- wind outflow, hot post-shock gas, and cooled inflow -- as a function of colatitude and radius within the closed (presumed dipole) field lines of the magnetosphere. We compare these scalings with time-averaged results from MHD simulations, and provide initial examples of application of this ADM model for deriving two key observational diagnostics, namely hydrogen H-alpha emission line profiles from the cooled infall, and X-ray emission from the hot post-shock gas. We conclude with a discussion of key issues and advantages in applying this ADM formalism toward derivation of a broader set of observational diagnostics and scaling trends for massive stars with such dynamical magnetospheres.Comment: 15 pages, 11 figures, accepted for MNRA

    The changing UV and X-ray properties of the Of?p star CPD -28 2561

    Full text link
    The Of?p star CPD -28 2561 was monitored at high energies with XMM-Newton and HST. In X-rays, this magnetic oblique rotator displays bright and hard emission that varies by ~55% with rotational phase. These changes occur in phase with optical variations, as expected for magnetically confined winds; there are two maxima and two minima in X-rays during the 73d rotational period of CPD -28 2561. However, contrary to previously studied cases, no significant hardness variation is detected between minima and maxima, with the exception of the second minimum which is slightly distinct from the first one. In the UV domain, broad-band fluxes remain stable while line profiles display large variations. Stronger absorptions at low velocities are observed when the magnetic equator is seen edge-on, which can be reproduced by a detailed 3D model. However, a difference in absorption at high velocities in the CIV and NV lines is also detected for the two phases where the confined wind is seen nearly pole-on. This suggests the presence of strong asymmetries about the magnetic equator, mostly in the free-flowing wind (rather than in the confined dynamical magnetosphere).Comment: 14 pages, 11 figures, accepted for publication by MNRA
    corecore