7 research outputs found

    Intraflagellar transport proteins are involved in thrombocyte filopodia formation and secretion

    No full text
    <p>Intraflagellar transport (IFT) proteins are vital for the genesis and maintenance of cilia. Our identification of <i>ift122</i> transcripts in zebrafish thrombocytes that lack primary cilia was unexpected. IFT proteins serve transport in cilia, whose narrow dimensions may have necessitated the evolution of IFT from vesicular transport in ancestral eukaryotes. We hypothesized that IFTs might also facilitate transport within the filopodia that form when thrombocytes are activated. To test this possibility, we knocked down <i>ift122</i> expression by injecting antisense Morpholino oligonucleotides (MOs) into zebrafish embryos. Laser-induced arterial thrombosis showed prolonged time to occlusion (TTO) of the vessel, as would be expected with defective thrombocyte function. Acute effects in adult zebrafish were evaluated by Vivo-Morpholino (Vivo-MO) knockdown of <i>ift122</i>. Vivo-MO morphants showed a prolonged time to thrombocyte aggregation (TTA) in the plate tilt assay after thrombocyte activation by the following agonists: ADP, collagen, PAR1 peptide, and epinephrine. A luminescence assay for ATP revealed that ATP secretion by thrombocytes was reduced in collagen-activated blood of Vivo-MO <i>ift122</i> morphants. Moreover, DiI-C18 labeled morphant thrombocytes exposed to collagen showed reductions in filopodia number and length. Analysis of <i>ift</i> mutants, in which cilia defects have been noted, also showed prolongation of TTO in our arterial laser thrombosis assay. Additionally, collagen activation of wild-type thrombocytes led to a concentration of IFT122 both within and at the base of filopodia. Taken together these results, suggest that IFT proteins are involved in both the extension of filopodia and secretion of ATP, which are critical in thrombocyte function.</p

    Rapid progression of adult T-cell leukemia/lymphoma as tumor-infiltrating Tregs after PD-1 blockade.

    No full text
    Immune checkpoint inhibitors are a powerful new tool in the treatment of cancer, with prolonged responses in multiple diseases, including hematologic malignancies, such as Hodgkin lymphoma. However, in a recent report, we demonstrated that the PD-1 inhibitor nivolumab led to rapid progression in patients with adult T-cell leukemia/lymphoma (ATLL) (NCT02631746). We obtained primary cells from these patients to determine the cause of this hyperprogression. Analyses of clonality, somatic mutations, and gene expression in the malignant cells confirmed the report of rapid clonal expansion after PD-1 blockade in these patients, revealed a previously unappreciated origin of these malignant cells, identified a novel connection between ATLL cells and tumor-resident regulatory T cells (Tregs), and exposed a tumor-suppressive role for PD-1 in ATLL. Identifying the mechanisms driving this alarming outcome in nivolumab-treated ATLL may be broadly informative for the growing problem of rapid progression with immune checkpoint therapies

    HTLV-1 viral oncogene HBZ drives bone destruction in adult T cell leukemia.

    Get PDF
    Osteolytic bone lesions and hypercalcemia are common, serious complications in adult T cell leukemia/lymphoma (ATL), an aggressive T cell malignancy associated with human T cell leukemia virus type 1 (HTLV-1) infection. The HTLV-1 viral oncogene HBZ has been implicated in ATL tumorigenesis and bone loss. In this study, we evaluated the role of HBZ on ATL-associated bone destruction using HTLV-1 infection and disease progression mouse models. Humanized mice infected with HTLV-1 developed lymphoproliferative disease and continuous, progressive osteolytic bone lesions. HTLV-1 lacking HBZ displayed only modest delays to lymphoproliferative disease but significantly decreased disease-associated bone loss compared with HTLV-1-infected mice. Gene expression array of acute ATL patient samples demonstrated increased expression of RANKL, a critical regulator of osteoclasts. We found that HBZ regulated RANKL in a c-Fos-dependent manner. Treatment of HTLV-1-infected humanized mice with denosumab, a monoclonal antibody against human RANKL, alleviated bone loss. Using patient-derived xenografts from primary human ATL cells to induce lymphoproliferative disease, we also observed profound tumor-induced bone destruction and increased c-Fos and RANKL gene expression. Together, these data show the critical role of HBZ in driving ATL-associated bone loss through RANKL and identify denosumab as a potential treatment to prevent bone complications in ATL patients
    corecore