436 research outputs found
The d subunit plays a central role in human vacuolar H+-ATPases
The multi-subunit vacuolar-type H+-ATPase consists of a V1 domain (A–H subunits) catalyzing ATP hydrolysis and a V0 domain (a, c, c′, c″, d, e) responsible for H+ translocation. The mammalian V0 d subunit is one of the least-well characterized, and its function and position within the pump are still unclear. It has two different forms encoded by separate genes, d1 being ubiquitous while d2 is predominantly expressed at the cell surface in kidney and osteoclast. To determine whether it forms part of the pump’s central stalk as suggested by bacterial A-ATPase studies, or is peripheral as hypothesized from a yeast model, we investigated both human d subunit isoforms. In silico structural modelling demonstrated that human d1 and d2 are structural orthologues of bacterial subunit C, despite poor sequence identity. Expression studies of d1 and d2 showed that each can pull down the central stalk’s D and F subunits from human kidney membrane, and in vitro studies using D and F further showed that the interactions between these proteins and the d subunit is direct. These data indicate that the d subunit in man is centrally located within the pump and is thus important in its rotary mechanism
Comparative analysis of involvement of UGT1 and UGT2 splice variants of UDP-galactose transporter in glycosylation of macromolecules in MDCK and CHO cell lines
Nucleotide sugar transporters deliver nucleotide sugars into the Golgi apparatus and endoplasmic reticulum. This study aimed to further characterize mammalian UDP-galactose transporter (UGT) in MDCK and CHO cell lines. MDCK-RCAr and CHO-Lec8 mutant cell lines are defective in UGT transporter, although they exhibit some level of galactosylation. Previously, only single forms of UGT were identified in both cell lines, UGT1 in MDCK cells and UGT2 in CHO cells. We have identified the second UGT splice variants in CHO (UGT1) and MDCK (UGT2) cells. Compared to UGT1, UGT2 is more abundant in nearly all examined mammalian tissues and cell lines, but MDCK cells exhibit different relative distribution of both splice variants. Complementation analysis demonstrated that both UGT splice variants are necessary for N- and O-glycosylation of proteins. Both mutant cell lines produce chondroitin-4-sulfate at only a slightly lower level compared to wild-type cells. This defect is corrected by overexpression of both UGT splice variants. MDCK-RCAr mutant cells do not produce keratan sulfate and this effect is not corrected by either UGT splice variant, overexpressed either singly or in combination. Here we demonstrate that both UGT splice variants are important for glycosylation of proteins. In contrast to MDCK cells, MDCK-RCAr mutant cells may possess an additional defect within the keratan sulfate biosynthesis pathway
Receptor Sorting within Endosomal Trafficking Pathway Is Facilitated by Dynamic Actin Filaments
Early endosomes (EEs) are known to be a sorting station for internalized
molecules destined for degradation, recycling, or other intracellular
organelles. Segregation is an essential step in such sorting, but the molecular
mechanism of this process remains to be elucidated. Here, we show that actin is
required for efficient recycling and endosomal maturation by producing a motile
force. Perturbation of actin dynamics by drugs induced a few enlarged EEs
containing several degradative vacuoles and also interfered with their
transporting ability. Actin repolymerization induced by washout of the drug
caused the vacuoles to dissociate and individually translocate toward the
perinuclear region. We further elucidated that cortactin, an actin-nucleating
factor, was required for transporting contents from within EEs. Actin filaments
regulated by cortactin may provide a motile force for efficient sorting within
early endosomes. These data suggest that actin filaments coordinate with
microtubules to mediate segregation in EEs
Inhibition of Host Vacuolar H+-ATPase Activity by a Legionella pneumophila Effector
Legionella pneumophila is an intracellular pathogen responsible for Legionnaires' disease. This bacterium uses the Dot/Icm type IV secretion system to inject a large number of bacterial proteins into host cells to facilitate the biogenesis of a phagosome permissive for its intracellular growth. Like many highly adapted intravacuolar pathogens, L. pneumophila is able to maintain a neutral pH in the lumen of its phagosome, particularly in the early phase of infection. However, in all cases, the molecular mechanisms underlying this observation remain unknown. In this report, we describe the identification and characterization of a Legionella protein termed SidK that specifically targets host v-ATPase, the multi-subunit machinery primarily responsible for organelle acidification in eukaryotic cells. Our results indicate that after being injected into infected cells by the Dot/Icm secretion system, SidK interacts with VatA, a key component of the proton pump. Such binding leads to the inhibition of ATP hydrolysis and proton translocation. When delivered into macrophages, SidK inhibits vacuole acidification and impairs the ability of the cells to digest non-pathogenic E. coli. We also show that a domain located in the N-terminal portion of SidK is responsible for its interactions with VatA. Furthermore, expression of sidK is highly induced when bacteria begin to enter new growth cycle, correlating well with the potential temporal requirement of its activity during infection. Our results indicate that direct targeting of v-ATPase by secreted proteins constitutes a virulence strategy for L. pneumophila, a vacuolar pathogen of macrophages and amoebae
Vacuolar ATPase Regulates Surfactant Secretion in Rat Alveolar Type II Cells by Modulating Lamellar Body Calcium
Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase) is the enzyme responsible for pumping H+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase) dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1), an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca2+ chelator, BAPTA-AM, the protein kinase C (PKC) inhibitor, staurosporine, and the Ca2+/calmodulin-dependent protein kinase II (CaMKII), KN-62. Baf A1 induced Ca2+ release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca2+ pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca2+ mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion
Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes
Cardiomyocytes use glucose as well as fatty acids for ATP production. These substrates are transported into the cell by glucose transporter 4 (GLUT4) and the fatty acid transporter CD36. Besides being located at the sarcolemma, GLUT4 and CD36 are stored in intracellular compartments. Raised plasma insulin concentrations and increased cardiac work will stimulate GLUT4 as well as CD36 to translocate to the sarcolemma. As so far studied, signaling pathways that regulate GLUT4 translocation similarly affect CD36 translocation. During the development of insulin resistance and type 2 diabetes, CD36 becomes permanently localized at the sarcolemma, whereas GLUT4 internalizes. This juxtaposed positioning of GLUT4 and CD36 is important for aberrant substrate uptake in the diabetic heart: chronically increased fatty acid uptake at the expense of glucose. To explain the differences in subcellular localization of GLUT4 and CD36 in type 2 diabetes, recent research has focused on the role of proteins involved in trafficking of cargo between subcellular compartments. Several of these proteins appear to be similarly involved in both GLUT4 and CD36 translocation. Others, however, have different roles in either GLUT4 or CD36 translocation. These trafficking components, which are differently involved in GLUT4 or CD36 translocation, may be considered novel targets for the development of therapies to restore the imbalanced substrate utilization that occurs in obesity, insulin resistance and diabetic cardiomyopathy
Errors in RNA-Seq quantification affect genes of relevance to human disease
BACKGROUND: RNA-Seq has emerged as the standard for measuring gene expression and is an important technique often used in studies of human disease. Gene expression quantification involves comparison of the sequenced reads to a known genomic or transcriptomic reference. The accuracy of that quantification relies on there being enough unique information in the reads to enable bioinformatics tools to accurately assign the reads to the correct gene. RESULTS: We apply 12 common methods to estimate gene expression from RNA-Seq data and show that there are hundreds of genes whose expression is underestimated by one or more of those methods. Many of these genes have been implicated in human disease, and we describe their roles. We go on to propose a two-stage analysis of RNA-Seq data in which multi-mapped or ambiguous reads can instead be uniquely assigned to groups of genes. We apply this method to a recently published mouse cancer study, and demonstrate that we can extract relevant biological signal from data that would otherwise have been discarded. CONCLUSIONS: For hundreds of genes in the human genome, RNA-Seq is unable to measure expression accurately. These genes are enriched for gene families, and many of them have been implicated in human disease. We show that it is possible to use data that may otherwise have been discarded to measure group-level expression, and that such data contains biologically relevant information. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-015-0734-x) contains supplementary material, which is available to authorized users
- …