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Abstract

Background: RNA-Seq has emerged as the standard for measuring gene expression and is an important technique
often used in studies of human disease. Gene expression quantification involves comparison of the sequenced
reads to a known genomic or transcriptomic reference. The accuracy of that quantification relies on there being
enough unique information in the reads to enable bioinformatics tools to accurately assign the reads to the correct
gene.

Results: We apply 12 common methods to estimate gene expression from RNA-Seq data and show that there are
hundreds of genes whose expression is underestimated by one or more of those methods. Many of these genes
have been implicated in human disease, and we describe their roles. We go on to propose a two-stage analysis of
RNA-Seq data in which multi-mapped or ambiguous reads can instead be uniquely assigned to groups of genes.
We apply this method to a recently published mouse cancer study, and demonstrate that we can extract relevant
biological signal from data that would otherwise have been discarded.

Conclusions: For hundreds of genes in the human genome, RNA-Seq is unable to measure expression accurately.
These genes are enriched for gene families, and many of them have been implicated in human disease. We show
that it is possible to use data that may otherwise have been discarded to measure group-level expression, and that
such data contains biologically relevant information.
Background
Transcriptomics is an important approach that has
helped researchers understand the molecular basis of
disease in a range of species. Whilst for many years mi-
croarrays were the tool of choice, RNA-Seq [1] has now
emerged as the standard method for analysing the tran-
scriptome, contributing to thousands of publications in
the biomedical literature. High throughput, second gen-
eration sequencers routinely output several hundred mil-
lion reads at very low cost, and RNA-Seq is the
application of those sequencers to RNA that has under-
gone conversion to cDNA. The result is that researchers
can cheaply generate tens of millions of reads per sample,
allowing them to both measure expression and recon-
struct splice isoforms [2]. RNA-Seq is now fundamental
to many large functional annotation projects, such as
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2Edinburgh Genomics, The Roslin Institute, University of Edinburgh, Easter
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ENCODE [3], a large multi-national effort to define
functional elements in the human genome.
There are many existing bioinformatics approaches to

RNA-Seq quantification — the conversion of raw se-
quencing reads into estimates of gene expression. The
most popular approach involves aligning the reads to a
reference genome (or transcriptome) using a spliced
aligner such as TopHat [4] or STAR [5]. The alignment
step is very computationally intensive, with each sample
taking many hours, depending on tool and parameter
choices. The result is that each read (or fragment) is
assigned zero, one or many putative locations within the
reference sequence. Reads that map in multiple locations
are described as multi-mapped; in addition, any given
mapping location may overlap with multiple genes in
the annotation, and these are described as ambiguously
mapped reads. How the multi-mapped/ambiguous reads
are handled and reported is dependent on the software
chosen, and is a major source of error in RNA-Seq quanti-
fication. Given a set of alignments, additional tools are
needed to assign reads to genes to quantify gene
is article is distributed under the terms of the Creative Commons Attribution 4.0
.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
ive appropriate credit to the original author(s) and the source, provide a link to
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expression. Some use simple counting techniques against
a known annotation [6], whereas others simultaneously
construct transcripts and model-based estimates of gene
expression [2].
Short-read alignment is a complex problem, and in

RNA-Seq this is further compounded by gene families.
Having many members with identical or close-to-
identical sequences, gene families are often enriched for
multi-mapped reads; therefore, the results of RNA-Seq
quantification depend on the choice of aligner, the
choice of the reference, a huge array of parameters, and
algorithmic details relating to how multi-mapped reads
are handled and reported. The choice of quantification
tool also has a huge effect, as these also differ in the way
they handle aligned data and multi-mapped/ambiguous
reads.
Recently, Patro et al. [7] described a new method

which builds an index of unique kmers within tran-
scripts, and uses those to estimate gene expression dir-
ectly from the raw reads. The algorithm reports a 25
times faster run time than other approaches, with
equivalent accuracy. However, it is unable to discover
novel transcript isoforms or splice junctions (a key bene-
fit of RNA-Seq), and by relying on kmers, which are ne-
cessarily less than the read length, they are likely to
suffer similar issues to those caused by multi-mapped
reads.
At the heart of RNA-Seq is an assumption that the

method produces reliable measurements of gene expres-
sion, and a recent paper has suggested that this may not
be the case [8]. In this study we test biases introduced
by the bioinformatics aspects of RNA-Seq quantification —
that is, the conversion of raw sequencing reads into esti-
mates of gene expression. We test a wide range of tech-
niques and find systematic biases within each of them,
Table 1 Method description

Method Aligner Q

star.htseq. u STAR 2.4.0 h

star.htseq.ine STAR 2.4.0 h

star.htseq. is STAR 2.4.0 h

tophat.htseq. u TopHat 2.0.12 h

tophat.htseq.ine TopHat 2.0.12 h

tophat.htseq. is TopHat 2.0.12 h

star.cufflinks STAR 2.4.0 C

star.cufflinks.mr STAR 2.4.0 C

tophat.cufflinks TopHat 2.0.12 C

tophat.cufflinks.mr TopHat 2.0.12 C

sailfish NA S

sailfish NA S

A description of the RNA-Seq alignment and quantification methods used. NA not a
resulting in severe underestimation or overestimation of
gene expression in hundreds of genes, many of which
have relevance to human disease. We go on to propose
a two-stage RNA-Seq analysis that allows researchers to
discover biological signal within data that may otherwise
have been discarded.

Results
Simulation of reads from all protein-coding genes
We simulated 1000 perfect RNA-Seq read pairs from
each of 19,654 protein-coding genes, and estimated
their gene expression using 12 different methods (see
“Materials and methods”; Table 1). Of 19,654 million
read pairs, TopHat reported 850,613 fragments without
a unique mapping (4.33 %) whereas STAR reported
583,308 (2.97 %).
Read counts and estimates of gene expression for the

12 methods and 19,654 genes can be seen in Additional
file 1: Table S1. In total, 843 (4.31 %) genes were
assigned a read count less than 100 by at least one of
the methods, and 586 (2.98 %) were assigned a read
count of zero, suggesting that those genes are com-
pletely undetectable by the method(s) in question. A
total of 187 genes were assigned a read count greater
than 1900 by at least one of the methods. The two lists
(<100 or >1900) are not mutually exclusive, as some
genes were underestimated by one method yet overesti-
mated by another. In total, 958 genes were assigned
vastly under- or overestimated read counts by at least
one method.
When comparing expected with reported FPKM (frag-

ments per kilobase per million; see “Materials and
Methods”) values, Sailfish (r = 0.953), TopHat plus Cuf-
flinks (r = 0.953) and STAR plus Cufflinks (r = 0.951)
performed best, although the accuracy of the Cufflinks
uantification Quantification notes

tseq-count (HTSeq 0.6.1) -m union

tseq-count (HTSeq 0.6.1) -m intersection-strict

tseq-count (HTSeq 0.6.1) -m intersection-nonempty

tseq-count (HTSeq 0.6.1) -m union

tseq-count (HTSeq 0.6.1) -m intersection-strict

tseq-count (HTSeq 0.6.1) -m intersection-nonempty

ufflinks 2.2.1

ufflinks 2.2.1 –multi-read-correct

ufflinks 2.2.1

ufflinks 2.2.1 –multi-read-correct

ailfish 0.6.3 quant.sf

ailfish 0.6.3 quant_bias_corrected.sf

pplicable
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methods dropped to r = 0.899 and r = 0.907, respectively,
once the –multi-read-correct parameter was chosen.
The bias correction values from Sailfish performed ter-
ribly (r = 0.083), and we suspect some problem with the
bias correction model on these data (Table 2).
The scatterplots in Fig. 1a show observed versus ex-

pected FPKM for all methods. In general, the methods
using HTSeq show a linear relationship between ob-
served and expected values, but also provide the most
false negatives (where expected FPKM > > observed
FPKM). The results from Cufflinks show two distinct
trends in all cases: a distinct curved relationship between
observed and expected FPKM, and an overall trend to
overestimate the FPKM. The overestimation is greater
for shorter transcripts. Correcting for multi-mapped
reads in Cufflinks increases the number of false nega-
tives. Finally, the Sailfish results show a very linear rela-
tionship between observed and expected, albeit with a
slight tendency for overestimation. The Sailfish graph is
distorted by a single gene whose expression is vastly
overestimated — GAGE2E, a member of the GAGE gene
family that has been implicated in many types of cancer
(see below). The bias-corrected Sailfish results show al-
most no relationship between observed and expected
FPKM.
The barplots in Fig. 1b show histograms of the esti-

mated number of reads assigned to each gene, and we
would expect to see a single large peak at 1000. The read
counts data confirm the results from the FPKM data —
all but one method (Sailfish bias-corrected) has a large
peak close to 1000; read counts from HTSeq have a very
strong peak at 1000, but tend to show a long tail of false
Table 2 Method performance on global simulated data

Method Description Pearson
correlation
coefficient

Star.htseq. u STAR, HTSeq (union) 0.78

Star.htseq.ine STAR, HTSeq (intersection-nonempty) 0.88

Star.htseq. is STAR, HTSeq (intersection-strict) 0.86

Tophat.htseq. u TopHat2, HTSeq (union) 0.78

Tophat.htseq.ine TopHat2, HTSeq (intersection-
nonempty)

0.87

Tophat.htseq. is TopHat2, HTSeq (intersection-strict) 0.86

Star.cufflinks STAR, Cufflinks 0.95

Star.cufflinks.mr STAR, Cufflinks (multi-read-correct) 0.91

Tophat.cufflinks TopHat2, Cufflinks 0.95

Tophat.cufflinks.mr TopHat2, Cufflinks (multi-read-correct) 0.90

Sailfish Sailfish (RPKM) 0.95

Sailfish Sailfish bias-corrected (RPKM) 0.08

Pearson correlation coefficients between FPKM from each method and the
expected FPKM from simulated data for 19,654 human protein-coding genes.
RPKM reads per kilobase per million (see “Materials and Methods”)
negatives; read counts from Cufflinks have a peak at
1000, but a wider distribution in general and show a ten-
dency to overestimate; Sailfish appears to be very accur-
ate; and the Sailfish bias-correction method hasn’t
worked well on these data. Of note is the star.htseq.
is.count histogram, which shows a peak below 1000, and
a larger number of false negatives. This pattern is not
seen in the tophat.htseq. is.count, suggesting that there
is an aligner-specific effect of the “intersection strict”
parameter in HTSeq.
Finally, the heatmap in Fig. 1c includes all genes where

the estimated number of reads is less than 100 (n = 843)
or greater than 1900 (n = 187) in at least one method
(n = 958). We can see large numbers of genes whose
expression is underestimated by HTSeq-based ap-
proaches. Whilst some of those genes are accurately
measured by Cufflinks-based approaches, others are ei-
ther over- or underestimated. The overall impression is
that none of the methods provide an accurate picture
of the expression of all of these genes, with each
method showing relatively large numbers of genes with
either under- or overestimated read counts.

Characteristics of problematic genes
Having identified 958 problematic genes whose expres-
sion is either severely over- or underestimated by at least
one method, we looked to see if there were any general
characteristics of the problematic genes. Minimum,
maximum and mean exon length, total number of exons,
transcript length, percentage GC, and the number of
reads overlapping the transcripts from both the TopHat
and STAR alignments were calculated for all 19,654
genes. Figure 2 shows a boxplot comparing those statis-
tics for the 958 problematic and 18,696 remaining genes.
In the group of problematic genes, the longest exon

tended to be shorter, as did the mean exon length. Prob-
lematic genes tended to have a slightly lower number of
exons, and the transcripts tended to be shorter. There
was a very slight tendency for problematic genes to have
a higher GC content; however, most striking is the num-
ber of reads overlapping problematic genes. On average,
problematic genes had 2164 unique fragments overlap-
ping their exons from the STAR alignment, and 2680
unique fragments overlapping their exons from the
TopHat alignment. As we simulated 1000 reads from
each gene, this indicates that one of the major issues for
RNA-Seq quantification is multi-mapped reads and the
resolution of mapped fragments to a single gene.
The heatmap in Fig. 1c includes all genes where the esti-

mated number of reads is less than 100 (n = 843) or greater
than 1900 (n = 187) in at least one method (n = 958). The
heatmap can be broken down into four groups: at the top
is a group of genes where the accuracy is high for HTSeq-
based approaches and Sailfish, but where Cufflinks



Fig. 1 Comparison of methods on global simulated data. a Scatter plots comparing FPKM for each of the 12 methods against the known FPKM
from simulated data. The red line indicates the y = x line. b Histograms of read counts for each of the 12 methods. All methods should have a
single peak at 1000. c A heatmap of read counts from 843 grossly underestimated genes and 187 grossly overestimated genes. Black and darker
colours indicate read counts close to 1000 (accurate); green colours indicate underestimation and red colours overestimation
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overestimates. These genes tend to be very short, with
low numbers of exons, and have relatively low numbers
of multi-mapped reads (Additional file 2: Figure S1).
Below that group is a group of genes where the read
count is underestimated by HTSeq, overestimated by
Cufflinks, and where Sailfish is accurate. These genes
also tend to be short in length, with low numbers of
exons, but have high numbers of multi-mapped reads
(Additional file 3: Figure S2). The third group is a group
of genes where the read count is underestimated by
HTSeq, and both Sailfish and Cufflinks approaches are
accurate. These genes are of normal length, and have
high numbers of multi-mapped reads (Additional file 4:
Figure S3). The fourth group is very similar to the third,
except the addition of the –multi-read-correct param-
eter to Cufflinks results in underestimation. This group
also contains a group of genes which Sailfish overesti-
mates. These genes again tend to be shorter than nor-
mal, with very high numbers of multi-mapped reads
(Additional file 5: Figure S4).

RNA-Seq underestimates expression in genes relevant to
human disease
Having identified a set of genes whose gene expression
current bioinformatics methods are unable to accurately
measure, we wanted to identify and emphasize the im-
portance of those genes in human disease. The full re-
sults, including estimates of read counts and FPKM,
from all 12 methods for all 19,654 genes can be seen in
Additional file 1: Table S1.
The Y-chromosome deleted-in-azoospermia (DAZ)

gene family is associated with the AZFc (azoospermia



Fig. 2 General characteristics of problematic genes. Boxplots comparing the length of the shortest exon, the length of the longest exon, the
mean exon length, the total number of exons, the transcript length, transcript percentage GC, the number of reads overlapping from the STAR
alignment and the number of reads overlapping the TopHat alignment for the 958 problematic genes and the 18,696 other genes
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factor c) phenotype of male infertility [9]. The AZFc re-
gion of the Y chromosome is highly susceptible to struc-
tural variations due to the presence of repetitive
amplicons. Four DAZ gene copies are located on the Y
chromosome in palindromic duplications and are
expressed in the human testis with highly polymorphic
expression [10]. Deletion of DAZ genes in humans has
been correlated with male infertility in both a South
Chinese [11] and a Tunisian population [12]. Similarly,
RPS4Y2 lies within the AZFb locus, also suggesting a
link with male infertility [13]. RBMY1, part of the RBMY
gene family, has been shown to be involved in the regu-
lation of sperm motility [14], and deletion of it has been
associated with male infertility [15]. Ten genes in the
dataset are annotated as DAZ1 to DAZ4. Expression of
all the DAZ genes (DAZ1–DAZ4) is totally missed by
the HTSeq methods, with all read counts close to zero.
Sailfish reports read counts and RPKM (reads per kilo-
base per million) close to zero for seven of the ten genes,
and overestimates the gene expression by 1.65 to 5.36
times the expected FPKM value for the remaining three.
The Cufflinks approaches do reasonably well on four
DAZ transcripts, but underestimate in the other six
(read counts < 210), and the multi-read-correction par-
ameter results in all transcripts having FPKM and read
counts close to zero. Two genes are annotated as
RPS4Y2 in our data. HTSeq approaches assign a read
count of zero to both members. Tophat.cufflinks and
star.cufflinks overestimate the read count (almost three
times) and FPKM for one copy, yet assigns values of
zero to the second, whereas Sailfish produces accurate
estimates for both. There are ten members of the
RBMY1 gene family. HTSeq underestimates in all cases;
both Cufflinks methods perform variably with slight
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under- and overestimates. Sailfish overestimates for five
of the genes, yet underestimates for the remaining five.
Genes in the cancer/testis (CT) multigene families are

expressed in numerous cancer types and members are
the targets for cancer immunotherapy [16]. Two classes
of CT gene families are defined based on the genomic
locations of their gene members: genes are either located
on autosomes or located often as clusters of genes on
the X chromosome. The CT47A subfamily consists of
13 genes arranged as direct tandem repeats within the
Xq24 region of the X chromosome, recently resolved by
longer read lengths (36–42 kb) achieved by the MinION
Nanopore sequencers [17]. The biomedical relevance of
this gene family is further highlighted by the fact that
the Xq24 genomic region and the CT47A locus have
been reported to contain structural variants associated
with X-linked intellectual disability [18] and X-linked
mental retardation [19]. A related gene family member,
CT45A7, has been reported to be expressed in lung can-
cer [20]. Twelve genes are annotated as being part of the
CT47A gene family in our simulated dataset. HTSeq
misses the expression of all the genes in this family;
Sailfish strongly underestimates the gene expression of 7
out of the 12 CT47A genes (with a ratio of observed ver-
sus expected FPKM values of 0.04 to 0.08), strongly
overestimates the gene expression of a further two
genes, and reports an FPKM close to the truth for a fur-
ther three. The tophat.cufflinks method works best here,
reporting FPKM values between 42 and 59 where the ex-
pected value is 39. However, the use of the –multi-read-
correct parameter results in highly inaccurate results.
Interestingly, star.cufflinks underestimates the expres-
sion of these genes in all cases (FPKM values between
0.26 and 6.8). On further inspection, whilst TopHat re-
ports between 9829 and 11,077 (mulit-mapped) reads
overlapping these genes, STAR only reports between 131
and 398.
The GAGE cancer/testis antigens are expressed in a

large number of cancers [21–24] and have been shown
to have anti-apoptotic characteristics [25]. Consisting of
at least 16 genes within tandem repeats, these are likely
to be due to replication under positive selection [26].
GAGE antigens are known targets for tumour-specific
cytotoxic lymphocytes in melanoma [27]. Twelve genes
are annotated as being part of the GAGE family in our
simulated data. All read counts are underestimated by
more than 50 % by the HTSeq-based methods, except
for GAGE1, which is assigned a read count between 825
and 851 depending on the aligner and parameters
chosen. Both tophat.cufflinks and star.cufflinks report
read counts and FPKM values above zero for these
genes, but almost all are underestimates, and tophat.cuf-
flinks performs better than star.cufflinks. Sailfish reports
a read count of zero for four of the GAGE genes,
underestimates a further six, yet strongly overestimates
the final two. One of these, GAGE2E, is the outlier vis-
ible in Fig. 1a — assigned over 8000 reads, and with the
reported RPKM over five times that of the expected
FPKM.
The UTY genes are located within the male-specific

region of the Y chromosome (MSY), and Ensembl predicts
there are 13 paralogous genes within the group. The genes
encode the “ubiquitously transcribed Y chromosome tetra-
tricopeptide repeat protein”. Haplogroup I [28] — a com-
mon European lineage of the Y chromosome — is known
to be associated with an increased risk of coronary artery
disease [29]. This predisposition to coronary artery disease
was shown to be associated with the down-regulation of
UTY genes (amongst others) in macrophages. Again, 12
genes are annotated as UTY in our simulated dataset. All
HTSeq methods underestimate the number of reads in all
cases, with most estimates being zero or close to zero.
Both star.cufflinks and tophat.cufflinks report FPKM
values greater than zero, and both methods under- and
overestimate for different members of the family (read
counts range from 228 to 2347). Use of the –multi-read-
correct parameter did not change the estimates signifi-
cantly. Sailfish underestimates ten of the members, two
with read counts close to zero, and overestimates the final
two.
TSPY1 (Testis-specific protein, Y-linked 1) copy num-

ber variation impacts on spermatogenetic efficiency and
low copy numbers have been associated with infertility
in males [30]. The TSPY1 gene is located within the
gonadoblastoma locus on the Y chromosome (GBY), and
in women presenting abnormal karyotypes the TSPY1
gene is thought to play a major role in gonadoblastoma
tumorigenesis [31]. The TSPY gene family has been
shown to play a role in testicular germ cell tumours [32]
and was proposed as a biomarker for male hepatocellu-
lar carcinoma [33]. Additionally, the TSPY gene is
expressed in the brain, suggesting a role in neural devel-
opment [34]. Thirteen genes are annotated as being part
of the TSPY gene family in our simulated data. Again,
the HTSeq methods grossly underestimate read counts
in all cases. Both the star.cufflinks and tophat.cufflinks
methods are reasonably accurate, yet this accuracy is
removed when using the –multi-read-correct param-
eter. Sailfish reports a range, from severe underestima-
tion (zero), to overestimation (1.85 times the expected
FPKM).
Members of the USP17 family have been linked to

apoptosis [35]. NPIPA3 is a member of the NPIP gene
family, members of which are expressed in the macula
and have been proposed as a susceptibility locus for age-
related macular degeneration [36]. TBC1D3C is a mem-
ber of the TBC1D3 gene family, which has been linked
to prostate cancer [37] and tumour formation in mice
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[38]. DUX4 is a pro-apoptotic protein [39] in the D4Z4
locus, made up of tandem copies of a 3.3-kb repeat,
which has been linked to facioscapulohumeral muscular
dystrophy [40]. All of the above families display now fa-
miliar patterns: HTSeq-based approaches tend to se-
verely underestimate, and star.cufflinks, tophat.cufflinks
and Sailfish perform variably, including severe underesti-
mation, severe overestimation or occasionally accurate.
In most cases, the use of the –multi-read-correct param-
eter in the Cufflinks methods decreases accuracy.
It is beyond the scope of this paper to analyse all 958

genes; however, by focusing on the subset above, we
have demonstrated that RNA-Seq often underestimates
the expression of many genes which are relevant to hu-
man disease, and that no single method is accurate in all
cases.

Simulation of reads from problematic genes
Having assigned the same number of reads to each gene
in the previous section, we then simulated a second
dataset with a variable numbers of reads to test whether
we had unfairly biased the results towards a particular
method. Using the 958 problematic genes identified
above, we simulated a random number of reads between
100 and 100,000 from each gene. In total we simulated
49 million read pairs; in this second dataset, STAR re-
ported 15.37 million read pairs without a unique map-
ping (31 %) whereas TopHat reported 16.12 million
non-unique fragments (32 %).
Full results can be seen in Additional file 6: Table S2.

As expected, each method performs significantly worse
on the subset of difficult genes than on the global data-
set (Table 3). The two Cufflinks methods perform best
(r = 0.90), though these drop to 0.83 and 0.82 when the
Table 3 Method performance on targeted simulated data

Method Description Pearson
correlation
coefficient

Star.htseq. u STAR, HTSeq (union) 0.58

Star.htseq.ine STAR, HTSeq (intersection-nonempty) 0.76

Star.htseq. is STAR, HTSeq (intersection-strict) 0.75

Tophat.htseq. u TopHat2, HTSeq (union) 0.58

Tophat.htseq.ine TopHat2, HTSeq (intersection-nonempty) 0.75

Tophat.htseq. is TopHat2, HTSeq (intersection-strict) 0.75

Star.cufflinks STAR, Cufflinks 0.90

Star.cufflinks.mr STAR, Cufflinks (multi-read-correct) 0.83

Tophat.cufflinks TopHat2, Cufflinks 0.90

Tophat.cufflinks.mr TopHat2, Cufflinks (multi-read-correct) 0.82

Sailfish Sailfish (RPKM) 0.85

Sailfish Sailfish bias-corrected (RPKM) −0.14

Pearson correlation coefficients between FPKM from each method and the
expected FPKM from simulated data for 958 difficult genes
–multi-read-correct parameter is chosen. The HTSeq
(union) methods perform particularly badly (r = 0.58)
and the Sailfish bias corrected method again appears not
to have worked on these data.
The scatterplots in Fig. 3a show expected versus calcu-

lated FPKM values for the 12 methods, and Fig. 3b
shows the expected versus observed number of reads.
These results reinforce those from the previous section:
the HTSeq methods all show large numbers of false neg-
atives; the Cufflinks methods have a tendency to over-
estimate the FPKM, and the –multi-read-correct
parameter increases the number of false negatives; and
Sailfish shows a good linear relationship between ex-
pected and observed FPKM, albeit with a tendency to
overestimate, with a few very-large overestimations.

Assigning multi-mapped reads to gene-groups reveals
biological signal
In our global simulated data, the mapping approaches
failed to assign between 2.97 % and 4.33 % of the reads
uniquely to a gene. We have used these data to define a
list of genes whose expression is difficult to estimate by
commonly used methods. Those results are from perfect
reads that were simulated from the same reference we
use for expression estimation, and we hypothesize that
the results would be far worse in real experiments. Many
of the problems stem from multi-mapped or ambiguous
reads, and there may not be enough information in
RNA-Seq data to assign these reads accurately to a sin-
gle gene.
We therefore propose a two stage analysis: in stage 1,

reads are assigned uniquely to genes; and in stage 2,
reads that map to multiple genes are assigned uniquely
to “multi-map groups” (MMGs). MMGs can be de-
scribed as groups of genes that multi-mapped reads
uniquely map to, consistently across the dataset (see
“Materials and methods”). MMGs do not rely on existing
annotation, and are derived from the data themselves
(see “Materials and methods”).
To demonstrate the efficacy of this approach, we re-

analysed five datasets from a recent study of mouse lung
cancer [35]. The authors used RNA-Seq and demon-
strated cell type-specific differences between the tumour
and normal transcriptome in five populations of cells.
We re-analysed the data using STAR to align reads to
the genome, and HTSeq to count reads that can be
uniquely assigned to genes (Additional file 7: Table S3).
Using this method, we were unable to assign between
27.8 % and 43.9 % of the reads to a single gene. The
major reason for this was the high proportion of
multi-mapped reads, although many reads also over-
lapped either multiple or no features in the annotation.
Figure 4a shows the results of a principal components
analysis of the resulting FPKM values; despite ignoring



Fig. 3 Comparison of methods on difficult genes. a Scatter plots comparing observed FPKM for each of the 12 methods against the known
FPKM from simulated data. The red line indicates the y = x line. b Scatter plots comparing observed read counts for each of the 12 methods
against the known read counts from simulated data. The red line indicates the y = x line

Robert and Watson Genome Biology  (2015) 16:177 Page 8 of 16



Fig. 4 Principle components analysis (PCA) of mouse cancer study. a PCA of tumour (red) and normal (blue) RNA-Seq datasets from each of five
cell types. Input data are log(FPKM) values after mapping data using STAR and counting only uniquely mapped reads against known mouse
genes (stage 1 analysis) (b) PCA of tumour (red) and normal (blue) RNA-Seq datasets from each of five cell types. Input data are log(FPM) values
of reads that cannot be assigned to a single gene but can be uniquely assigned to a multi-map group (MMG). The reads used in (b) are only
those reads discarded from (a)
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between 27.8 % and 43.9 % of the reads, this method is
able to reproduce the results from Choi et al. [35]. We can
see cell type-specific differences between tumour and nor-
mal samples in all five datasets.
We then implemented the stage 2 analysis. Using only

reads that otherwise would have been discarded, we
assigned all unassigned reads uniquely to an MMG. To
reduce noise, only MMGs that had more than 100 reads
assigned to them in over 13 of the 27 datasets were kept
for further analysis. We collapsed large groups (n ≥ 5) by
merging two groups if one was completely contained
within the other. Using this method, we were able to
“rescue” between 21.6 % and 48.4 % of the discarded
reads to 4847 MMGs (Additional file 8: Table S4) con-
taining 5544 genes (genes may be members of more
than one MMG). The minimum group size was 1, the
maximum 47, and the mean size 3.2. MMGs may be size
1 because sometimes all multi-mapped locations overlap
the same gene; at other times, one or more mapped re-
gions may be intronic/intergenic, and one or more over-
lap a gene. In all cases, htseq-count discards the read. In
total, 1051 of our MMGs were of size 1, and it would be
possible to add these MMGs to the single gene analysis.
Of the 4847 MMGs identified, 2431 (50.2 %) contain at
least one pseudogene, 4299 contain at least one protein
coding gene, and 1402 contain two or more protein cod-
ing genes.
Figure 4b shows the results of a principal components

analysis on the resulting log FPM (fragments per
million) values. We can see that by estimating the
expression of MMGs, we can reveal relevant biological
signal within the data that would have been discarded by
the stage 1 analysis, and we again see cell type-specific
differences between tumour and normal samples.

Differential expression of MMGs
Having accurately and uniquely assigned reads to
MMGs, it is now possible to carry out differential ex-
pression analysis to identify MMGs that are differentially
expressed between tumour and normal samples. Once
an MMG has been identified, researchers may use a
more targeted technique, such as quantitative PCR, to
calculate which genes within the group are differentially
expressed.
We first carried out differential expression between

tumour and normal lung cells based on the gene counts
from unique reads using edgeR [36]. This process identified
a total of 5620 differentially expressed genes (Additional
file 9: Table S5).
We then carried out an identical analysis on the

MMGs, and identified 1541 differentially expressed
MMGs between tumour and lung cells, including data
on 2292 genes (Additional file 10: Table S6). Of these,
1610 are not found in the list of 5620 differentially
expressed genes from the unique counts, indicating that
MMG analysis is capable of discovering significant re-
sults that might otherwise have been ignored.
To demonstrate that analysis of MMGs can discover

information not present in the analysis of unique counts,
we removed all groups from the list of differentially
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expressed MMGs that contained a member of the 5620
differentially expressed genes from stage 1. This leaves
672 MMGs (Additional file 11: Table S7). A heatmap of
the log FPM (fragments per million) values is shown in
Fig. 5, and demonstrates that MMGs which are exclusive
of differentially expressed genes from unique counts can
be used to separate tumour from normal samples.
To highlight further that MMG analysis can discover

information not present in the analysis of unique counts,
we show data from two relatively highly expressed
MMGs (logCPM ≥ 7).
MG4194 contains a single gene, “ENSMUSG00000024121”,

a protein-coding gene for Atp6v0c (ATPase, H+ transport-
ing, lysosomal V0 subunit C). ENSMUSG00000024121
was not found to be differentially expressed by the unique
read analysis, but MG4194 was found to be differentially
expressed by the MMG analysis. A comparison of the per-
centage of mapped reads is shown in Fig. 6, and we see a
clear difference between tumour and normal samples in
the MMG data. This gene is known to be expressed in the
lung [37], and inhibition of ATPases has been shown to
reduce the activity of prometastatic proteases [38].
Finally, MG994 contains three genes, Plac9a

(ENSMUSG00000095304), Plac9b (ENSMUSG00000072674)
and pseudogene Gm9780 (ENSMUSG00000094800). The
unique read analysis assigns a read count of zero to all
three genes, yet analysis of the MMG shows that there are
several thousand reads mapping to the normal cell sam-
ples, and several hundred to the tumour cell sample
(Table 4). This MMG is reported as differentially expressed
by edgeR.

Discussion and conclusions
We have shown that popular methods used to estimate
gene expression from RNA-Seq data often under- or over-
estimate the expression of hundreds of genes, and many
of those are relevant to human disease. We propose a sim-
ple but effective method that can be generically applied
and which can reveal biological signal in data that would
otherwise have been discarded.
Logically, any method which uses sequence similarity

to assign reads to a given annotation will struggle when
features within that annotation share high sequence
similarity themselves. Thus, gene families within the hu-
man genome present a problem for RNA-Seq, as bio-
informatics methods will find it difficult to determine
the correct gene from which a given read originates. The
843 genes assigned a read count less than 100 by at least
one of the methods we tested are enriched for paralo-
gues (Fisher’s exact test, p = 0.00012), which supports
our observation that gene families are problematic. Fur-
thermore, it has been widely reported that human
monogenic disorders are enriched for gene duplications
[34], which led us to the hypothesis that RNA-Seq may
struggle to estimate the expression of many genes of
relevance to human health and disease. Indeed this ap-
pears to be the case — in this paper we identify hundreds
of genes whose expression is grossly underestimated or
overestimated by a range of methods, and we describe
many of their roles in disease.
The fact that RNA-Seq does not measure all genes ac-

curately is in itself not novel; however, many “unknown
unknowns” remain; not only does RNA-Seq not measure
accurately the expression of certain genes, but re-
searchers do not know which genes are affected. By pub-
lishing the results of 12 commonly used methods on
19,654 human protein-coding genes, we reveal the ac-
curacy of each method for each gene. This is an import-
ant resource for researchers carrying out RNA-Seq in
humans. Not only can researchers look up lists of genes
to see whether they can be accurately estimated, but
these data will also help inform the choice of bioinfor-
matics software if researchers know a priori which genes
are likely to be involved in their study; alternatively, re-
searchers may choose to run several different pipelines
and take a consensus approach.
The purpose of our study is not to criticise the methods

themselves — they are all accurate methods for estimating
gene expression. However, as sequencing comes closer to
the clinic, and with the possibility that sequencing data
may be used to inform clinical decisions, it is important to
focus not only on what we can measure accurately, but
also what we cannot.
The performance of the methods we tested varied, and

no single method accurately estimated gene expression
in all cases. By simulating reads with zero errors, and
using the same reference genome to both simulate and
quantify expression, we are giving the tested methods
the best possible chance of success. Therefore, any prob-
lems we encountered indicate systematic biases in the
methods themselves. With data from real experiments,
less than perfect data from a transcriptome which is
noisier than the reference, the results are likely to be far
worse.
The various methods can be classified into model-

based and count-based methods. The HTSeq methods
are count-based and produce a pleasing linear relation-
ship between expected and observed FPKM for genes
with high proportions of uniquely mapped reads. How-
ever, by ignoring multi-mapped reads (a deliberate
choice [6]), the software produces many more false neg-
atives than other approaches. HTSeq makes no attempt
to re-assign multi-mapped reads to the correct gene,
and multi-mapped reads are discarded by default. As
well as increasing the number of false negatives, it also
eliminates false positives. The union, intersection-strict
and intersection-non-empty parameters affect how HTSeq
deals with uniquely mapped reads and the features they



Fig. 5 Heatmap of novel multi-map groups (MMGs). A heatmap of
the log FPM (fragments per million) values for 672 differentially
expressed MMGs that do not contain any genes present in the list
of differentially expressed genes from an analysis of unique counts.
The heatmap demonstrates that MMGs which are exclusive of
differentially expressed genes from unique counts can be used to
separate tumour from normal samples
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overlap. The intersection-strict method is the most strict,
and only assigns reads to a feature if those reads are com-
pletely contained within a single feature. Both the union
and intersection-non-empty approaches allow partial
overlaps with features, and union attempts to resolve
reads that overlap two features whereas intersection-non-
empty does not. The use of the intersection-strict ap-
proach seemed to negatively impact the results from
STAR more than the results from TopHat. Inspection of
the HTSeq output reveals that the star.htseq. is.count ap-
proach had a far higher number of alignments assigned to
the group “__no_feature” (1,451,559) than tophat.htseq.
is.count (201,658). The “__no_feature” group is used by
HTSeq when reads overhang the end of exon features, or
overlap introns. The set of genes where tophap.htseq.
is.count is accurate and star.htseq. is.count is not includes
many genes with very short exons, and it may be that
TopHat is slightly better than STAR at aligning reads pre-
cisely to short exons. A deeper comparison of these two
aligners is required, but is outside the scope of this
manuscript.
Globally, the choice of aligner doesn’t appear to have a

huge effect on the results, although differences in the
parameter settings and algorithms can produce very dif-
ferent results for certain genes, as seen with the number
of reads reported for the CT47A genes.
Cufflinks is a model-based approach, and whilst the

overall correlation between expected and observed is
high in all cases, they do not share a linear relationship.
The curved relationship between expected and observed
FPKM is due to the “effective length” adjustment per-
formed by Cufflinks. This approach attempts to deter-
mine the actual length of transcripts from the data
themselves, rather than from the genome annotation.
However, we simulated reads from the entire length of
transcripts, so annotated length and effective length
should be equal. That they are not reveals a potential
bias in this approach, which is applied by default, and
which can be switched off using the –no-effective-
length-correction parameter. The bias more seriously af-
fects shorter genes, and their FPKMs are overestimated.
Sailfish is also model-based, and shows the highest cor-
relation between expected and observed. Sailfish RPKM’s
show a linear relationship with expected FPKM, albeit
with a slight tendency to overestimate. The case of
GAGE2E reveals an obvious error in the software. There



Fig. 6 Comparison of read counts for (a) ENSMUSG00000024121 and (b) MG4194. Read counts expressed as a percentage of the mapped reads
for gene ENSMUSG00000024121, and MG4194, a single-gene MMG that contains only ENSMUSG00000024121. ENSMUSG00000024121 was not
found to be differentially expressed by the unique read analysis, but MG4194 was found to be differentially expressed by the MMG analysis.
Black bars represent tumour samples, white bars normal samples
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are other genes where Sailfish vastly overestimates the
number of reads (Additional file 1: Table S1), including
members of the DAZ, CT47, GAGE and UTY gene fam-
ilies. All of these have very high numbers of multi-
mapped reads, and belong to gene families with a high
amount of sequence homology. This suggests that there
are simply not enough unique kmers within the Sailfish
index to accurately measure the expression of these
genes. The complete failure of the bias-correction step
in Sailfish is likely to be because our simulated data do
not fit the assumptions of Sailfish’s bias-correction
model.
By avoiding the alignment stage, it may be that

methods such as Sailfish have an advantage over Cuf-
flinks and HTSeq. When measuring gene expression
against a known annotation, Sailfish is able to consider
all reads in the input dataset; however, Cufflinks and
HTSeq are only able to consider those reads that map to
locations that overlap genes in the annotation file; in
Table 4 Gene and MMG counts for MG994

Lung cells tumour
1

Lung cells tumour
2

Lung ce
3

ENSMUSG00000072674 0 0 0

ENSMUSG00000094800 0 0 0

ENSMUSG00000095304 0 0 0

MG994 (raw counts) 541 721 325

MG994 (percentage
total)

0.007 0.009 0.004

Counts data for MG994. The three genes included in MG994 have a read count of z
uniquely within the group, and is differentially expressed between normal and tum
other words, Sailfish can access all of the input reads,
whereas Cufflinks and HTSeq only access a subset.
In this paper we propose a two-stage analysis of RNA-

Seq data whereby those reads that cannot be uniquely
assigned to a single gene in stage 1 are instead assigned
uniquely to a group of genes (a MMG) in stage 2. The
benefit of this approach is that the MMGs can be de-
rived from the data themselves and do not rely on an
existing annotation. We make no assumption about the
relatedness of genes within each MMG, other than to
state that RNA-Seq reads consistently multi-map to all
genes within each group across the dataset. In fact, many
groups represent known relationships — for example,
MG1 consists of genes ENSMUSG00000038646,
ENSMUSG00000074826, and ENSMUSG00000094437,
which are identified as paralogues within Ensembl. We
didn’t use this known paralogous relationship in the ana-
lysis — MG1 was derived solely from the multi-mapped
reads. Whilst it is not a focus of this paper, finding
lls tumour Lung cells normal
1

Lung cells normal
2

Lung cells normal
3

0 0 0

0 0 0

0 0 0

3298 3268 1471

0.043 0.037 0.019

ero from the unique read analysis. However, MG994 has many reads that map
our cells
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MMGs in multiple experiments may be a novel way of
discovering new relationships between genes.
We demonstrate the effectiveness of the MMG ap-

proach using a recently published mouse cancer RNA-Seq
dataset, and show that biological signal can be discovered
in data that would otherwise have been discarded. Using
MMGs, we can accurately measure gene expression at the
group level. This means that we can also accurately assess
differential expression at the group level. We analysed the
mouse lung cell data from Choi et al. [35] and show that
MMG analysis can reveal information about genes that
would be missed when one considers only the uniquely
mapped reads. Of the differentially expressed MMGs, 672
contained only genes that were not called as differentially
expressed in the first stage analysis. Once differentially
expressed groups have been identified, it may then be pos-
sible to use a more targeted approach to identify precisely
which genes within the group are responsible.
A high number of the MMGs we identified contained

at least one pseudogene (2431/4847), which indicates
that mapping to pseudogenes is a major source of multi-
mapped reads. Whilst it is tempting to dismiss pseudo-
genes and assign reads instead to their functional coun-
terpart, we cannot be absolutely sure that reads which
map to both a functional and a pseudogene come from
the functional gene.
The MMG approach complements traditional, gene

level-based expression analyses. At present, the only op-
tion available to researchers is to measure gene- or
transcript-level expression, and as we have shown, for a
subset of genes the software tools often get this wrong.
RNA-Seq simply does not have the resolution to meas-
ure those genes accurately. For many genes whose
expression we cannot accurately measure, we can accur-
ately measure the expression of a group of genes to
which they belong. Furthermore, we can derive those
groups directly from the data themselves. One argument
against group-level expression studies is that individual
genes may be differentially expressed, whilst the group
is not. Although this is true, for many genes RNA-Seq
does not offer the resolution required for gene-level
analysis. Using MMGs, we at least (accurately) recover a
significant proportion of the data.
Whilst we use MMGs, the method of assigning reads

uniquely to groups of genes is generic, and researchers
may choose an existing annotation if they wish — for ex-
ample, gene families, paralogous groups, protein fam-
ilies, or even gene ontology terms or pathways may be
used. As long as reads can be uniquely assigned to a sin-
gle entity, then expression measurements can be com-
pared reliably across samples. As a count-based
approach, this method complements the approach im-
plemented in HTSeq, and it becomes possible to rescue
many of the reads that HTSeq ignores.
Multi-mapped or ambiguous reads are a significant
problem and researchers should not assume that the
bioinformatics methods they use handle these accurately.
We show that in a recent study in mice, up to 43 % of
the reads could not be uniquely assigned to a single
gene. We have tested 12 methods and identified a subset
of 958 human genes that are problematic for existing
methods. We have identified the role many of these
genes play in human disease. Finally, we have proposed
a simple but novel way of assigning reads to groups of
genes, and show that this can be used to discover bio-
logical signal in data that may otherwise have been
discarded.

Materials and methods
Nomenclature
Throughout this manuscript we use the term read (or
reads) to refer to both reads from the same fragment in
a paired-end dataset. Therefore, when calculating FPKM
(fragments per kilobase per million), we count each read
pair only once. Whilst Sailfish reports an RPKM (reads
per kilobase per million), our calculations suggest this is
in fact an FPKM.

Simulated data
We wanted to isolate and test the process of RNA-Seq
quantification, and separate it from biases introduced by
other parts of the RNA-Seq workflow. Therefore, we
simulated 1000 perfect RNA-Seq reads from each of
19,654 protein-coding transcripts annotated in Ensembl
[41] using wgsim [42]. The reads are 100-bp paired-end,
with an insert size of 250 bp and zero errors. The tran-
scripts were chosen as follows: we selected only genes
annotated on the core chromosomes of Grch38, and fur-
ther filtered for protein-coding genes longer than 400 bp
in length. For each gene in the set, we chose the single
longest transcript. The resulting data are 19,654,000
paired-end reads.
For the targeted simulated data from 958 difficult

genes, we simulated a random number of read pairs
between 100 and 100,000 for each gene using the same
method. The resulting data are 49,431,873 paired-end
reads.

Calculating gene expression and read counts
We tested 12 different RNA-Seq quantification workflows:
alignment with STAR [5] or TopHat [4], followed by
quantification by htseq-count [6] with each of three op-
tions: union, intersection_strict and intersection_empty;
alignment with STAR [5] or TopHat [4] followed by quan-
tification with Cufflinks [2], both with and without multi-
read correction (−−multi-read-correct); and Sailfish [7],
both raw and bias-corrected results (Table 1). Upon
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inspection of the results, the bias-corrected data from
Sailfish were eliminated from further analyses.
Some methods report read counts, some methods re-

port FPKM and others report both. To translate between
FPKM and read count, we used the following formulae:

FPKM ¼ Rc= Tð Þ = Rm

Rc ¼ FPKM � Rmð Þ � T

where Rc is the read count assigned to a gene; T is the
transcript length in kilobases; and Rm is the total num-
ber of reads in millions.

Analysis of mouse lung cancer data with multi-map
groups
We propose a simple two-stage RNA-Seq analysis which
will help extract information from reads that cannot be
assigned to a single gene. In the first stage, reads that
can be assigned uniquely to a gene are processed. In the
second stage, only those reads that cannot be uniquely
assigned to a single gene are analyzed.
We downloaded all data from NCBI Sequence Read

Archive (SRA) accession PRJNA256324. In the first stage
analysis, reads were mapped to the mouse genome using
STAR. We used htseq-count from the HTSeq package to
count reads against known genes. Those reads that were
ignored by the stage one analysis were used as input to
the second stage analysis. The –o option to htseq-count
outputs a SAM file describing the fate of each read. For
each unassigned read, we compiled a list of all genes the
reads mapped to using BEDTools and a series of Perl
scripts. These lists of genes formed the basis of the
MMGs. Counts against all MMGs discovered in the data
across all samples were compiled, and these were then
filtered such that only MMGs that had at least 100 reads
in at least 13 of the datasets were kept. Large groups
(n ≥ 5) were collapsed such that any group that was
wholly included within a larger group were merged. All
scripts are available from [43].
The heatmap in Fig. 5 was created as follows. Input

data were log-transformed fragments-per-million (FPM)
values. The Pearson correlation matrix was calculated for
MMGs and samples, and converted to a distance matrix
by subtracting from 1. The heatmap was drawn using the
heatmap.2() function in R, scaling the data by row.

Differential expression
Differential expression was carried out on raw read
counts for genes and MMGs, respectively, using edgeR
[36]. Normalisation factors were calculated and applied,
and the common dispersion and tag-wise dispersion esti-
mated. We computed gene-wise exact tests to test for
differences between the means of tumour (samples
SRR1528732, SRR1528733, and SRR1528734) and normal
(samples SRR1528735, SRR1528736, and SRR1528737)
lung cells based on the negative-binomial distribution.
P values were adjusted for the false discovery rate.

Additional files

Additional file 1: Table S1. Counts and FPKM for simulated data from
all genes. FPKM and read counts calculated by 12 different methods for
19,654 human protein-coding genes. Can be downloaded from [43].
(XLSX 7248 kb)

Additional file 2: Figure S1. General characteristics of first problematic
group. Boxplots comparing the length of the shortest exon, the length of
the longest exon, the mean exon length, the total number of exons, the
transcript length, transcript percentage GC, the number of reads
overlapping from the STAR alignment and the number of reads
overlapping the TopHat alignment for a group of genes where HTSeq
and Sailfish are accurate, but Cufflinks overestimates. (JPEG 569 kb)

Additional file 3: Figure S2. General characteristics of second
problematic group. Boxplots comparing the length of the shortest exon,
the length of the longest exon, the mean exon length, the total number
of exons, the transcript length, transcript percentage GC, the number of
reads overlapping from the STAR alignment and the number of reads
overlapping the TopHat alignment for a group of genes where HTSeq
underestimates, Cufflinks overestimates and Sailfish is accurate. (JPEG 581 kb)

Additional file 4: Figure S3. General characteristics of third
problematic group. Boxplots comparing the length of the shortest exon,
the length of the longest exon, the mean exon length, the total number
of exons, the transcript length, transcript percentage GC, the number of
reads overlapping from the STAR alignment and the number of reads
overlapping the TopHat alignment for a group of genes where HTSeq
underestimates, Cufflinks and Sailfish are accurate. (JPEG 576 kb)

Additional file 5: Figure S4. General characteristics of third
problematic group. Boxplots comparing the length of the shortest exon,
the length of the longest exon, the mean exon length, the total number
of exons, the transcript length, transcript percentage GC, the number of
reads overlapping from the STAR alignment and the number of reads
overlapping the TopHat alignment for a group of genes where HTSeq
underestimates, Cufflinks and Sailfish are accurate but the use of
the –multi-read-correct parameter in Cuffinks results in
underestimation. (JPEG 575 kb)

Additional file 6: Table S2. Counts and FPKM for simulated data from
958 problematic genes. FPKM and read counts calculated by 12 different
methods for 958 problematic human protein-coding genes. Can be
downloaded from [43]. (XLSX 311 kb)

Additional file 7: Table S3. Unique counts from Choi et al. [35]. Counts
of reads from Choi et al. that map uniquely to genes using STAR and
HTSeq. Can be downloaded from [43]. (XLSX 5833 kb)

Additional file 8: Table S4. Counts of multi-map groups (MMGs) from
Choi et al. [35]. Counts of reads from Choi et al. that map uniquely to
MMGs. Can be downloaded from [43]. (XLSX 876 kb)

Additional file 9: Table S5. EdgeR results from unique counts. Differential
expression results calculated by edgeR for gene counts produced by the
stage 1 analysis. Can be downloaded from [43]. (XLSX 2159 kb)

Additional file 10: Table S6. EdgeR results from MMGs. Differential
expression results calculated by edgeR for MMG counts produced by the
stage 2 analysis. Can be downloaded from [43]. (XLSX 428 kb)

Additional file 11: Table S7. Novel differentially expressed MMGs. The
672 differentially expressed MMGs that do not contain any genes
identified as differentially expressed by the stage 1 analysis. Can be
downloaded from [43]. (XLSX 67 kb)
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