2 research outputs found

    Syntheses, molecular structures, and self-assemblies of SFe<sub>3</sub>, S<sub>2</sub>Fe<sub>3</sub>, S<sub>3</sub>Fe<sub>5</sub>, SeFe<sub>3</sub>, and Se<sub>2</sub>Fe<sub>3</sub> clusters with chelating diaminocarbenes

    No full text
    <div><p>The reactions of substituted thioureas and selenoureas with iron carbonyls have been systematically investigated, and five types of SFe<sub>3</sub>, S<sub>2</sub>Fe<sub>3</sub>, S<sub>3</sub>Fe<sub>5</sub>, SeFe<sub>3</sub>, and Se<sub>2</sub>Fe<sub>3</sub> clusters with chelating diaminocarbenes have been synthesized and characterized by X-ray crystallography. The reactions of C<sub>3</sub>H<sub>5</sub>NHC(=S)NHAr with Fe<sub>3</sub>(CO)<sub>12</sub> afford (μ<sub>3</sub>-S)Fe<sub>3</sub>(CO)<sub>7</sub>(μ-CO)(κ<sup>3</sup><i>C</i>,<i>C</i>,<i>C</i>-C<sub>3</sub>H<sub>5</sub>NHCNHAr) (<b>1</b>, Ar = Ph; <b>2</b>, Ar = 4-H<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>). In contrast, the reactions of (2-C<sub>5</sub>H<sub>4</sub>N)NHC(=S)NHN=CHAr with Fe<sub>2</sub>(CO)<sub>9</sub> form (μ<sub>3</sub>-S)<sub>2</sub>Fe<sub>3</sub>(CO)<sub>7</sub>(κ<sup>2</sup><i>N</i>,<i>C</i>-(2-C<sub>5</sub>H<sub>4</sub>N)NHCNHN=CHAr) (<b>3</b>, Ar = Ph; <b>4</b>, Ar = 4-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>). Likewise, reactions of GNHC(=S)NHC(=O)Ph with Fe<sub>3</sub>(CO)<sub>12</sub> provide (μ<sub>3</sub>-S)<sub>2</sub>Fe<sub>3</sub>(CO)<sub>7</sub>(κ<sup>2</sup><i>N</i>,<i>C</i>-GNHCNHC(=O)Ph) (<b>5</b>, G = 2-C<sub>5</sub>H<sub>4</sub>N; <b>6</b>, G = 2-C<sub>4</sub>H<sub>3</sub>N<sub>2</sub>) as well as Fe<sub>3</sub>(CO)<sub>8</sub>(μ-CO)<sub>2</sub>(κ<sup>2</sup><i>N</i>,<i>C</i>-(2-C<sub>4</sub>H<sub>3</sub>N<sub>2</sub>)NHCNHC(=O)Ph). The reaction of (2-C<sub>5</sub>H<sub>4</sub>N)NHC(=S)NH<sub>2</sub> with Fe<sub>3</sub>(CO)<sub>12</sub> gives (μ<sub>3</sub>-S)<sub>2</sub>Fe<sub>3</sub>(CO)<sub>7</sub>(κ<sup>2</sup><i>N</i>,<i>C</i>-(2-C<sub>5</sub>H<sub>4</sub>N)NHCNH<sub>2</sub>) (<b>7</b>). The reactions of GNHC(=S)NHPh with Fe<sub>3</sub>(CO)<sub>12</sub> produce (μ<sub>3</sub>-S)<sub>2</sub>Fe<sub>3</sub>(CO)<sub>7</sub>(κ<sup>2</sup><i>N</i>,<i>C</i>-GNHCNHPh) (<b>8</b>, G = 2-C<sub>5</sub>H<sub>4</sub>N; <b>9</b>, G = 2-C<sub>4</sub>H<sub>3</sub>N<sub>2</sub>). Analogously, (2-C<sub>5</sub>H<sub>4</sub>N)NHC(=S)NH(2-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>) offers (μ<sub>3</sub>-S)<sub>2</sub>Fe<sub>3</sub>(CO)<sub>7</sub>(κ<sup>2</sup><i>N</i>,<i>C</i>-(2-C<sub>5</sub>H<sub>4</sub>N)NHCNH(2-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>)) (<b>10</b>). However, (2-C<sub>5</sub>H<sub>4</sub>N)NHC(=S)NH(2-CH<sub>3</sub>OC<sub>6</sub>H<sub>4</sub>) generates (μ<sub>3</sub>-S)<sub>2</sub>(μ<sub>4</sub>-S)Fe<sub>5</sub>(CO)<sub>10</sub>(μ-CO)<sub>2</sub>(κ<sup>2</sup><i>N</i>,<i>C</i>-(2-C<sub>5</sub>H<sub>4</sub>N)NHCNH(2-CH<sub>3</sub>OC<sub>6</sub>H<sub>4</sub>)) (<b>11</b>). Furthermore, the reactions of (2-C<sub>5</sub>H<sub>4</sub>N)NHC(=S)NHR with Fe<sub>3</sub>(CO)<sub>12</sub> form (μ<sub>3</sub>-S)<sub>2</sub>(μ<sub>4</sub>-S)Fe<sub>5</sub>(CO)<sub>10</sub>(μ-CO)<sub>2</sub>(κ<sup>2</sup><i>N</i>,<i>C</i>-(2-C<sub>5</sub>H<sub>4</sub>N)NHCNHR) (<b>12</b>, R = 2-H<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>; <b>13</b>, R = 4-H<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>; <b>14</b>, R = 2-C<sub>5</sub>H<sub>4</sub>N). Surprisingly, the reaction of (2-C<sub>5</sub>H<sub>4</sub>N)NHC(=S)NHC<sub>3</sub>H<sub>5</sub> with Fe<sub>3</sub>(CO)<sub>12</sub> leads to (μ<sub>3</sub>-S)<sub>2</sub>(μ<sub>4</sub>-S)Fe<sub>5</sub>(CO)<sub>10</sub>(μ-CO)<sub>2</sub>(κ<sup>2</sup><i>N</i>,<i>C</i>-(2-C<sub>5</sub>H<sub>4</sub>N)NHCNHC<sub>3</sub>H<sub>5</sub>) (<b>15</b>). The reaction of C<sub>3</sub>H<sub>5</sub>NHC(=Se)NHPh with Fe<sub>3</sub>(CO)<sub>12</sub> affords (μ<sub>3</sub>-Se)Fe<sub>3</sub>(CO)<sub>7</sub>(μ-CO)(κ<sup>3</sup><i>C</i>,<i>C</i>,<i>C</i>-C<sub>3</sub>H<sub>5</sub>NHCNHPh) (<b>16</b>) as well as [(κ<sup>2</sup><i>N</i>,<i>C</i>-PhNCNHC<sub>3</sub>H<sub>5</sub>)Fe<sub>2</sub>(CO)<sub>6</sub>(μ<sub>4</sub>-Se)Fe<sub>2</sub>(CO)<sub>6</sub>]<sub>2</sub>(μ<sub>4</sub>-Se). As with (2-C<sub>4</sub>H<sub>3</sub>N<sub>2</sub>)NHC(=S)NHPh, (2-C<sub>4</sub>H<sub>3</sub>N<sub>2</sub>)NHC(=Se)NHPh offers (μ<sub>3</sub>-Se)<sub>2</sub>Fe<sub>3</sub>(CO)<sub>7</sub>(κ<sup>2</sup><i>N</i>,<i>C</i>-(2-C<sub>4</sub>H<sub>3</sub>N<sub>2</sub>)NHCNHPh) (<b>17</b>). Unlike (2-C<sub>5</sub>H<sub>4</sub>N)NHC(=S)NH(2-CH<sub>3</sub>OC<sub>6</sub>H<sub>4</sub>), (2-C<sub>5</sub>H<sub>4</sub>N)NHC(=Se)NH(2-CH<sub>3</sub>OC<sub>6</sub>H<sub>4</sub>) yields (μ<sub>3</sub>-Se)<sub>2</sub>Fe<sub>3</sub>(CO)<sub>7</sub>(κ<sup>2</sup><i>N</i>,<i>C</i>-(2-C<sub>5</sub>H<sub>4</sub>N)NHCNH(2-CH<sub>3</sub>OC<sub>6</sub>H<sub>4</sub>)) (<b>18</b>). By virtue of N–HN, N–HO, and C–HO intermolecular hydrogen bonds along with other non-covalent interactions, these new organometallic clusters exhibit interesting supramolecular structures.</p></div

    Syntheses, crystal structures, and electrochemistry of novel Fe<sub>2</sub>SN and FeSN carbonyl complexes with pendant bases

    No full text
    <div><p>Reactions of Fe<sub>2</sub>(CO)<sub>9</sub> with thioacylhydrazones ArCH=NNHCSPh in THF afford Fe<sub>2</sub>(CO)<sub>6</sub>(μ-κ<sup>2</sup>S:κ<sup>2</sup>N-PhC(S)=NNCHArCHArN(CHAr)N=CSPh) (<b>1</b>, Ar = C<sub>6</sub>H<sub>5</sub>; <b>3</b>, Ar = 4-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>) and Fe(CO)<sub>3</sub>(κ<sup>2</sup>S:N-PhC(=S)NHNCHArCHArN(CHAr)N=CSPh) (<b>2</b>, Ar = C<sub>6</sub>H<sub>5</sub>; <b>4</b>, Ar = 4-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>). They have been characterized by elemental analyses, IR, <sup>1</sup>H NMR, and <sup>13</sup>C NMR and structurally determined by X-ray crystallography. Electrochemical studies reveal that when using HOAc as a proton source, they exhibit high catalytic H<sub>2</sub>-production.</p></div
    corecore