122,484 research outputs found
Evidence for a chemical-thermal structure at base of mantle from sharp lateral P-wave variations beneath Central America
Compressional waves that sample the lowermost mantle west of Central America show a rapid change in travel times of up to 4 s over a sampling distance of 300 km and a change in waveforms. The differential travel times of the PKP waves (which traverse Earth's core) correlate remarkably well with predictions for S-wave tomography. Our modeling suggests a sharp transition in the lowermost mantle from a broad slow region to a broad fast region with a narrow zone of slowest anomaly next to the boundary beneath the Cocos Plate and the Caribbean Plate. The structure may be the result of ponding of ancient subducted Farallon slabs situated near the edge of a thermal and chemical upwelling
Design, implementation, and testing of advanced virtual coordinate-measuring machines
Copyright @ 2011 IEEE. This article has been made available through the Brunel Open Access Publishing Fund.Advanced virtual coordinate-measuring machines (CMMs) (AVCMMs) have recently been developed at Brunel University, which provide vivid graphical representation and powerful simulation of CMM operations, together with Monte-Carlo-based uncertainty evaluation. In an integrated virtual environment, the user can plan an inspection strategy for a given task, carry out virtual measurements, and evaluate the uncertainty associated with the measurement results, all without the need of using a physical machine. The obtained estimate of uncertainty can serve as a rapid feedback for the user to optimize the inspection plan in the AVCMM before actual measurements or as an evaluation of the measurement results performed. This paper details the methodology, design, and implementation of the AVCMM system, including CMM modeling, probe contact and collision detection, error modeling and simulation, and uncertainty evaluation. This paper further reports experimental results for the testing of the AVCMM
The spin-polarized state of graphene: a spin superconductor
We study the spin-polarized Landau-level state of graphene. Due to
the electron-hole attractive interaction, electrons and holes can bound into
pairs. These pairs can then condense into a spin-triplet superfluid ground
state: a spin superconductor state. In this state, a gap opens up in the edge
bands as well as in the bulk bands, thus it is a charge insulator, but it can
carry the spin current without dissipation. These results can well explain the
insulating behavior of the spin-polarized state in the recent
experiments.Comment: 6 pages, 4 figure
A 0.18μm CMOS 9mW current-mode FLF linear phase filter with gain boost
“This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”The design and implementation of a CMOS continuous-time follow-the-leader-feedback (FLF) filter is described. The filter is implemented using a fully-differential linear, low voltage and low power consumption operational transconductance amplifier (OTA) based on a source degeneration topology. PSpice simulations using a standard TSMC 0.18 mum CMOS process with 2 V power supply have shown that the cut-off frequency of the filter ranges from 55 MHz to 160 MHz and dynamic range is about 45 dB. The group delay is less than 5% over the whole tuning range; the power consumption is only 9 mW
Theoretical limit of the minimal magnetization switching field and the optimal field pulse for Stoner particles
The theoretical limit of the minimal magnetization switching field and the
optimal field pulse design for uniaxial Stoner particles are investigated. Two
results are obtained. One is the existence of a theoretical limit of the
smallest magnetic field out of all possible designs. It is shown that the limit
is proportional to the damping constant in the weak damping regime and
approaches the Stoner-Wohlfarth (SW) limit at large damping. For a realistic
damping constant, this limit is more than ten times smaller than that of
so-called precessional magnetization reversal under a non-collinear static
field. The other is on the optimal field pulse design: If the magnitude of a
magnetic field does not change, but its direction can vary during a reversal
process, there is an optimal design that gives the shortest switching time. The
switching time depends on the field magnitude, damping constant, and magnetic
anisotropy. However, the optimal pulse shape depends only on the damping
constant.Comment: 4 pages, 4 figure
- …
