85,760 research outputs found

    Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector

    Get PDF
    In a GaN/AlGaN field-effect terahertz detector, the directional photocurrent is mapped in the two-dimensional space of the gate voltage and the drain/source bias. It is found that not only the magnitude, but also the polarity, of the photocurrent can be tuned. A quasistatic self-mixing model taking into account the localized terahertz field provides a quantitative description of the detector characteristics. Strongly localized self-mixing is confirmed. It is therefore important to engineer the spatial distribution of the terahertz field and its coupling to the field-effect channel on the sub-micron scale.Comment: 12 pages, 4 figures, submitted to AP

    High-Fidelity Readout in Circuit Quantum Electrodynamics Using the Jaynes-Cummings Nonlinearity

    Full text link
    We demonstrate a qubit readout scheme that exploits the Jaynes-Cummings nonlinearity of a superconducting cavity coupled to transmon qubits. We find that in the strongly-driven dispersive regime of this system, there is the unexpected onset of a high-transmission "bright" state at a critical power which depends sensitively on the initial qubit state. A simple and robust measurement protocol exploiting this effect achieves a single-shot fidelity of 87% using a conventional sample design and experimental setup, and at least 61% fidelity to joint correlations of three qubits.Comment: 5 pages, 4 figure

    Thickness dependent magnetotransport in ultra-thin manganite films

    Full text link
    To understand the near-interface magnetism in manganites, uniform, ultra-thin films of La_{0.67}Sr_{0.33}MnO_3 were grown epitaxially on single crystal (001) LaAlO_3 and (110) NdGaO_3 substrates. The temperature and magnetic field dependent film resistance is used to probe the film's structural and magnetic properties. A surface and/or interface related dead-layer is inferred from the thickness dependent resistance and magnetoresistance. The total thickness of the dead layer is estimated to be ∼30A˚\sim 30 \AA for films on NdGaO_3 and ∼50A˚\sim 50 \AA for films on LaAlO_3.Comment: 11 pages, 4 figure

    Bottomonium Production at RHIC and LHC

    Full text link
    Properties of bottomonia (Upsilon, chi_b and Upsilon') in the Quark-Gluon Plasma (QGP) are investigated by assessing inelastic reaction rates and their interplay with open-bottom states (b-quarks or B-mesons) and color-screening. The latter leads to vanishing quarkonium binding energies at sufficiently high temperatures (close to the dissolution point), which, in particular, renders standard gluo-dissociation, g+Upsilon -> b + b-bar, inefficient due to a substantial reduction in final-state phase space. This problem is overcome by invoking a "quasifree" destruction mechanism, g,q,q-bar + Upsilon -> g,q,q-bar + b + b-bar, as previously introduced for charmonia. The pertinent reaction rates are implemented into a kinetic theory framework to evaluate the time evolution of bottomonia in heavy-ion reactions at RHIC and LHC within an expanding fireball model. While bottom quarks are assumed to be exclusively produced in primordial nucleon-nucleon collisions, their thermal relaxation times in the QGP, which importantly figure into Upsilon-formation rates, are estimated according to a recent Fokker-Planck treatment. Predictions for the centrality dependence of Upsilon production are given for upcoming experiments at RHIC and LHC. At both energies, Upsilon suppression turns out to be the prevalent effect.Comment: 16 Pages, 21 figures, 1 table v2: Manuscript reorganized, several sections moved to appendices, additional comments included, contents unchange
    • …
    corecore