43 research outputs found
Molecular Cloning and Response to Water Temperature and Nutrient Manipulation of Insulin-like Growth Factor (IGF) Genes in Golden Pompano Trachinotus ovatus (Linnaeus 1758) Larvae
In this study, insulin-like growth factor I (IGF I) and IGF II in golden pompano larvae were cloned and analyzed. In the first trial, IGF expression during ontogeny of larvae in the first 18-days of their life was explored, and then the response of IGFs to water temperature (23, 26, and 29oC) on 12 day post hatching (DPH) and 18 DPH were compared. On 28 DPH, the response of IGFs to the manipulation of nutrients was evaluated. The expression of IGF I increased with the increase of fish age, and was not significantly affected by water temperature. The expression of IGF II was affected by water temperature on 12 DPH and 18 DPH. The expression of IGF II at 23oC was significantly higher than at 26oC and 29oC. The expression of IGFs in fish larvae on 28 DPH was not concomitant with nutrient manipulation. This study detected the gene expression of IGFs at the early stage of golden pompano larvae. The time dependent expression of IGF genes in fish larvae is important to understand the ontogenetic development and growth of fish larvae in early life
Genetics and phylogeny of genus Coilia in China based on AFLP markers
The taxonomy of Coilia has been extensively studied in China, and yet phylogenetic relationships among component taxa remain controversial. We used a PCR-based fingerprinting technique, amplified fragment length polymorphism (AFLP) to characterize and identify all four species of Coilia in China. We examined the genetic relationships of the four species of Coilia and a subspecies of Coilia nasus with AFLP. A total of 180 AFLP loci were generated from six primer combinations, of which 76.11% were polymorphic. The mean genetic distance between pairs of taxa ranged from 0.047 to 0.596. The neighbor-joining tree and UPGMA dendrogram resolved the investigated species into three separate lineages: (1) C. mystus, (2) C. grayii and (3) C. brachygnathus, C. nasus, and C. nasus taihuensis. Phylogenetic analysis of the AFLP data is inconsistent with current morphological taxonomic systems. The AFLP data indicated a close relationship among C. brachygnathus, C. nasus taihuensis, and C. nasus. Therefore, the two species described under Coilia (C. brachygnathus and C. nasus taihuensis) are treated as synonyms of C. nasus
Genome-Wide Association Mapping for Cold Tolerance in a Core Collection of Rice (Oryza sativa L.) Landraces by Using High-Density Single Nucleotide Polymorphism Markers From Specific-Locus Amplified Fragment Sequencing
Understanding the genetic mechanism of cold tolerance in rice is important to mine elite genes from rice landraces and breed excellent cultivars for this trait. In this study, a genome-wide association study (GWAS) was performed using high-density single nucleotide polymorphisms (SNPs) obtained using specific-locus amplified fragment sequencing (SLAF-seq) technology from a core collection of landraces of rice. A total of 67,511 SNPs obtained from 116,643 SLAF tags were used for genotyping the 150 accessions of rice landraces in the Tingâs rice core collection. A compressed mixed liner model was used to perform GWAS by using the high-density SNPs for cold tolerance in rice landraces at the seedling stage. A total of 26 SNPs were found to be significantly (P < 1.48 Ă 10-7) associated with cold tolerance, which could explained phenotypic variations ranging from 26 to 33%. Among them, two quantitative trait loci (QTLs) were mapped closely to the previously cloned/mapped genes or QTLs for cold tolerance. A newly identified QTL for cold tolerance in rice was further characterized by sequencing, real time-polymerase chain reaction, and bioinformatics analyses. One candidate gene, i.e., Os01g0620100, showed different gene expression levels between the cold tolerant and sensitive landraces under cold stress. We found the difference of coding amino acid in Os01g0620100 between cold tolerant and sensitive landraces caused by polymorphism within the coding domain sequence. In addition, the prediction of Os01g0620100 protein revealed a WD40 domain that was frequently found in cold tolerant landraces. Therefore, we speculated that Os01g0620100 was highly important for the response to cold stress in rice. These results indicated that rice landraces are important sources for investigating rice cold tolerance, and the mapping results might provide important information to breed cold-tolerant rice cultivars by using marker-assisted selection
Intraoperative ultrasound-guided iodine-125 seed implantation for unresectable pancreatic carcinoma
<p>Abstract</p> <p>Background</p> <p>To assess the feasibility and efficacy of using <sup>125</sup>I seed implantation under intraoperative ultrasound guidance for unresectable pancreatic carcinoma.</p> <p>Methods</p> <p>Fourteen patients with pancreatic carcinoma that underwent laparotomy and considered unresectable were included in this study. Nine patients were pathologically diagnosed with Stage II disease, five patients with Stage III disease. Fourteen patients were treated with <sup>125</sup>I seed implantation guided by intraoperative ultrasound and received D<sub>90 </sub>of <sup>125</sup>I seeds ranging from 60 to 140 Gy with a median of 120 Gy. Five patients received an additional 35â50 Gy from external beam radiotherapy after seed implantation and six patients received 2â6 cycles of chemotherapy.</p> <p>Results</p> <p>87.5% (7/8) of patients received partial to complete pain relief. The response rate of tumor was 78.6%, One-, two-and three-year survival rates were 33.9% and 16.9%, 7.8%, with local control of disease achieved in 78.6% (11/14), and the median survival was 10 months (95% CI: 7.7â12.3).</p> <p>Conclusion</p> <p>There were no deaths related to <sup>125</sup>I seed implant. In this preliminary investigation, <sup>125</sup>I seed implant provided excellent palliation of pain relief, local control and prolong the survival of patients with stage II and III disease to some extent.</p
Next-generation sequencing yields the complete mitochondrial genome of the Capsala pricei Hidalgo, 1959 (Platyhelminthes: Monogenea) from South China Sea
The complete mitochondrial genome of the Capsala pricei (Monogenea: Capsalidae) collected from the sailfish (Istiophorus platypterus) was sequenced by the next-generation sequencing method. The mitogenome is 13,851âbp in length, includes 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a control region, with the atp8 gene being absent. The overall content of Aâ+âT is 69.26%, which is significantly higher than the Câ+âG content (30.74%). C shows the lowest frequency (13.42%) among four bases. Phylogeography analysis showed a close relationship between the genus Capsala and Neobenedenia with high bootstrap value supported
Compositional Shifts and Assembly in Rhizosphere-Associated Fungal Microbiota Throughout the Life Cycle of Japonica Rice Under Increased Nitrogen Fertilization
Abstract Soil fungal microbiomes facilitate a range of beneficial functions for their host plants, and rhizosphere fungal community composition, richness, and diversity affect plant growth and development, and crop yield. Therefore, exploring the community structure and assembly of the rhizosphere fungal microbiome and its relationship with soil biochemical properties are fundamental to elucidating how rice plants benefit from their fungal symbionts. In this study, soil samples were collected at seedling, tillering, heading, and ripening stages of rice subjected to three levels of nitrogen fertilization. Plant growth demonstrates a substantial influence on fungal community composition and diversity. From the tillering to the ripening stage, the fungal communities were governed by homogenizing dispersal and dispersal limitation. The prevalence of Glomeromycota, the beneficial fungi, was considerably higher during the heading stage compared to the three other growth stages. This increase in abundance was strongly associated with increased levels of soil nutrients and enhanced activity of nitrogen acquisition enzymes. This may be a strategy developed by rice grown in flooded soil to recruit beneficial fungi in the rhizosphere to meet high nitrogen demands. Our study findings contribute to elucidating the influence of plant development and nitrogen fertilization on the structure and composition of the fungal community as well as its relationship with soil key soil nutrient content and nitrogen-related enzyme activities. They also illustrate how a shift in the fungal community mediates and reflects the effects of nitrogen fertilization input in rice agroecosystems. These findings provide new insights into the effects of changes in nitrogen application in rice rhizosphere at different growth stages on fungal communities and soil biochemical characteristics
Effect of Micro-Textured Surfaces and Sliding Speed on the Lubrication Mechanism and Friction-Wear Characteristics of CF/PEEK Rubbing against 316L Stainless Steel under Seawater Lubrication
In this work, the lubrication mechanism and friction-wear characteristics of the friction pair between carbon-fiber-reinforced polyether ether ketone (CF/PPEK) and 316L stainless steel with a micro-hemispherical pit textured surface at different sliding speeds under seawater lubrication were studied through numerical simulation and experimental investigation. The study results indicate that the seawater moves following the sliding direction of the upper specimen, forms a vortex ring flow in the hemispherical pit of the bottom specimen, uses the convergent gap to generate a hydrodynamic effect, produces the bearing capacity, and realizes fluid lubrication. The hemispherical pit diminishes the abrasive wear during the friction process by storing the wear debris, and the main wear forms of the hemispherical-pit surface friction pair are oxidative wear and adhesive wear. The friction coefficient of the hemispherical-pit surface friction pair is 0.018â0.027, the specimen contact temperature is 40.2â55.1 °C, and it is always in the hydrodynamic lubrication state in a rotation speed ranging from 1000 r/min to 1750 r/min. As the sliding speed increases, the specimen contact temperature climbs, and the oxidation reaction gradually becomes full. Oxidative wear and adhesive wear alternately play a dominant role in the friction, and the wear rate first decreases and then increases sharply
Figure 5 from: Zhao L, Yi D, Li C, Sun D, Xu H, Gao T (2017) Phylogeography and population structure of - grypotus (Richardson, 1846) as revealed by mitochondrial control region sequences. ZooKeys 705: 143-158. https://doi.org/10.3897/zookeys.705.13001
The 137 individuals of Johnius grypotus were collected from seven localities from the Bohai Sea to the East China Sea. A 549 base pair (bp) fragment of the hypervariable region of the mtDNA control region was sequenced to examine genetic diversity and population structure. The populations of J. grypotus showed high haplotype diversity (h) with a range from 0.7500 to 0.9740 and low nucleotide diversity (Ï) with a range from 0.0024 to 0.0067. Low and non-significant genetic differentiation was estimated among populations except for North Yellow Sea population, which has a significant genetic difference with other populations. The demographic history examined by mismatch distribution analyses and Bayesian skyline plot (BSP) analyses revealed that a sudden population expansion occurred almost 20 to 40 thousand years before. Relatively recent population expansion in the last glacial period, large dispersal of eggs or larvae carried by coastal current, and the homogeneity of living environment may have an important influence on the population genetic pattern
Numerical simulation and analysis of temperature and flow field of high-speed axial piston motor pump
Based on the theories of heat transfer and the method of computational fluid dynamics, a liquidâsolid mathematical model of heat transfer of an axial piston hydraulic motor pump is constructed in this study. Through the finite volume method, the model with different cooling runners has been solved. Meanwhile, the oil flow regularity of runner and temperature distribution of the motor pump and oil duct has been obtained. On the basis of the model of long-strip runner, the influence of ambient temperature on the motor pump's temperature rise has been analysed. The result shows that the cooling channels on the housing of the hydraulic motor pump effectively reduce the temperature rise, and a long-strip channel is for optimum cooling. The average temperature rise of the motor pump increases linearly with the increase of ambient temperature
First record of Monotaxis heterodon (Actinopterygii: Perciformes: Lethrinidae) from the lagoon waters of Mischief Reef, South China Sea
Monotaxis heterodon (Bleeker, 1854) is widespread in the Indo-Pacific Ocean, however, it was reported that Monotaxis grandoculis (ForsskÄl, 1775) was the single species of Monotaxis in this area. We collected four M. heterodon specimens from the lagoon waters of Mischief Reef in South China Sea. A morphometric study was taken to confirm the occurrence of M. heterodon in the seawaters of the South China Sea and thoroughly separate them from M. grandoculis. In addition, DNA barcoding was taken for the classification of specimens. The mean genetic distance within M. heterodon group was 0.24 percentage points, group mean distance between M. heterodon and M. grandoculis was 8.71 percentage points. The phylogenetic analysis confirmed the existence of M. heterodon in the lagoon waters of the South China Sea. This study will contribute to species identification within this genus distributed in the South China Sea