7 research outputs found

    Analysis of the Effect of Time Delay on the Integrated GNSS/INS Navigation Systems

    Get PDF
    The performance of tightly coupled GNSS/INS integration is known to be better than that of loosely coupled GNSS/INS integration. However, if the time synchronization error occurs between the GNSS receiver and INS(Inertial Navigation System), the situation reverses. The performance of loosely coupled GNSS/INS integration and tightly coupled GNSS/INS integration is analyzed and compared due to time synchronization error by computer simulation

    Melittin restores proteasome function in an animal model of ALS

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a paralyzing disorder characterized by the progressive degeneration and death of motor neurons and occurs both as a sporadic and familial disease. Mutant SOD1 (mtSOD1) in motor neurons induces vulnerability to the disease through protein misfolding, mitochondrial dysfunction, oxidative damage, cytoskeletal abnormalities, defective axonal transport- and growth factor signaling, excitotoxicity, and neuro-inflammation

    Proto-Model of an Infrared Wide-Field Off-Axis Telescope

    Full text link
    We develop a proto-model of an off-axis reflective telescope for infrared wide-field observations based on the design of Schwarzschild-Chang type telescope. With only two mirrors, this design achieves an entrance pupil diameter of 50 mm and an effective focal length of 100 mm. We can apply this design to a mid-infrared telescope with a field of view of 8 deg X 8 deg. In spite of the substantial advantages of off-axis telescopes in the infrared compared to refractive or on-axis reflective telescopes, it is known to be difficult to align the mirrors in off-axis systems because of their asymmetric structures. Off-axis mirrors of our telescope are manufactured at the Korea Basic Science Institute (KBSI). We analyze the fabricated mirror surfaces by fitting polynomial functions to the measured data. We accomplish alignment of this two-mirror off-axis system using a ray tracing method. A simple imaging test is performed to compare a pinhole image with a simulated prediction.Comment: 14 pages, 16 figure

    Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amyotrophic lateral sclerosis (ALS) is a disease affecting the central nervous system that is either sporadic or familial origin and causing the death of motor neurons. One of the genetic factors contributing to the etiology of ALS is mutant SOD1 (mtSOD1), which induces vulnerability of motor neurons through protein misfolding, mitochondrial dysfunction, oxidative damage, cytoskeletal abnormalities, defective axonal transport, glutamate excitotoxicity, inadequate growth factor signaling, and neuroinflammation. Bee venom has been used in the practice of Oriental medicine and evidence from the literature indicates that BV plays an anti-inflammatory or anti-nociceptive role against inflammatory reactions associated with arthritis and other inflammatory diseases. The purpose of the present study was to determine whether bee venom suppresses motor neuron loss and microglial cell activation in hSOD1<sup>G93A </sup>mutant mice.</p> <p>Methods</p> <p>Bee venom (BV) was bilaterally injected (subcutaneously) into a 14-week-old (98 day old) male hSOD1<sup>G93A </sup>animal model at the Zusanli (ST36) acupoint, which is known to mediate an anti-inflammatory effect. For measurement of motor activity, rotarod test was performed and survival statistics were analyzed by Kaplan-Meier survival curves. The effects of BV treatment on anti-neuroinflammation of hSOD1<sup>G93A </sup>mice were assessed via immunoreactions using Iba 1 as a microglia marker and TNF-α antibody. Activation of ERK, Akt, p38 MAP Kinase (MAPK), and caspase 3 proteins was evaluated by western blotting.</p> <p>Results</p> <p>BV-treated mutant hSOD1 transgenic mice showed a decrease in the expression levels of microglia marker and phospho-p38 MAPK in the spinal cord and brainstem. Interestingly, treatment of BV in symptomatic ALS animals improved motor activity and the median survival of the BV-treated group (139 ± 3.5 days) was 18% greater than control group (117 ± 3.1 days). Furthermore, we found that BV suppressed caspase-3 activity and blocked the defects of mitochondrial structure and cristae morphology in the lumbar spinal cord of hSOD1<sup>G93A </sup>mice at the symptomatic stage.</p> <p>Conclusion</p> <p>From these findings, our research suggests BV could be a potential therapeutic agent for anti-neuroinflammatory effects in an animal model of ALS.</p

    Grinding Optimization Model for Nanometric Surface Roughness for Aspheric Astronomical Optical Surfaces

    No full text
    Bound abrasive grinding is used for the initial fabrication phase of the precision aspheric mirrors for both space and ground based astronomical telescopes. We developed a new grinding optimization process that determines the input grinding variables for the target surface roughness, checks the grinding error magnitude in resulting surface roughnesses, and minimizes the required machining time. Using the machining data collected from the previous grinding runs and subsequently fed into the multi-variable regression engine, the process has the evolving controllability that suggests the optimum set of grinding variables for each target surface roughness. The process model was then used for ten grinding experiments that resulted in the grinding accuracy of =-0.906 ± 3.38(σ) nm (Ra) for the target surface roughnesses of Zerodur substrate ranging from 96.1 nm (Ra) to 65.0 nm (Ra). The results imply that the quantitative process optimization technique developed in this study minimizes the machining time and offers the nanometric surface roughness controllability superior to the traditional, qualitative, craftsman based grinding process for the astronomical optical surfaces

    Development of the Earth Observation Camera of MIRIS

    No full text
    We have designed and manufactured the Earth observation camera (EOC) of multi-purpose infrared imaging system (MIRIS). MIRIS is a main payload of the STSAT-3, which will be launched in late 2012. The main objective of the EOC is to test the operation of Korean IR technology in space, so we have designed the optical and mechanical system of the EOC to fit the IR detector system. We have assembled the flight model (FM) of EOC and performed environment tests successfully. The EOC is now ready to be integrated into the satellite system waiting for operation in space, as planned
    corecore