83,939 research outputs found

    Phonon anomalies in pure and underdoped R{1-x}K{x}Fe{2}As{2} (R = Ba, Sr) investigated by Raman light scattering

    Full text link
    We present a detailed temperature dependent Raman light scattering study of optical phonons in Ba{1-x}K{x}Fe{2}As{2} (x ~ 0.28, superconducting Tc ~ 29 K), Sr{1-x}K{x}Fe{2}As{2} (x ~ 0.15, Tc ~ 29 K) and non-superconducting BaFe{2}As{2} single crystals. In all samples we observe a strong continuous narrowing of the Raman-active Fe and As vibrations upon cooling below the spin-density-wave transition Ts. We attribute this effect to the opening of the spin-density-wave gap. The electron-phonon linewidths inferred from these data greatly exceed the predictions of ab-initio density functional calculations without spin polarization, which may imply that local magnetic moments survive well above Ts. A first-order structural transition accompanying the spin-density-wave transition induces discontinuous jumps in the phonon frequencies. These anomalies are increasingly suppressed for higher potassium concentrations. We also observe subtle phonon anomalies at the superconducting transition temperature Tc, with a behavior qualitatively similar to that in the cuprate superconductors.Comment: 5 pages, 6 figures, accepted versio

    NIR Luminosity Function of Galaxies in Close Major-Merger Pairs and Mass Dependence of Merger Rate

    Full text link
    A sample of close major-merger pairs (projected separation 5≤r≤20h−1{\rm 5 \leq r \leq 20 h^{-1}} kpc, Ks{\rm K_s} band magnitude difference δKs≤1\delta {\rm K_s} \leq 1 mag) is selected from the matched 2MASS-2dFGRS catalog of Cole et al. (2001). The pair primaries are brighter than Ks=12.5{\rm K_s} = 12.5 mag. After corrections for various biases, the comparison between counts in the paired galaxy sample and counts in the parent sample shows that for the local `M* galaxies' sampled by flux limited surveys, the fraction of galaxies in the close major-merger pairs is 1.70±0.32\pm 0.32%. Using 38 paired galaxies in the sample, a Ks{\rm K_s} band luminosity function (LF) is calculated. This is the first unbiased LF for a sample of objectively defined interacting/merging galaxies in the local universe, while all previously determined LFs of paired galaxies are biased by mistreating paired galaxies as singles. A stellar mass function (MF) is translated from the LF. Compared to the LF/MF of 2MASS galaxies, a differential pair fraction function is derived. The results suggest a trend in the sense that less massive galaxies may have lower chance to be involved in close major-merger pairs than more massive galaxies. The algorithm presented in this paper can be easily applied to much larger samples of 2MASS galaxies with redshifts in near future.Comment: Accepted by ApJL, 16 pages, 2 figure

    The angular momentum of a magnetically trapped atomic condensate

    Full text link
    For an atomic condensate in an axially symmetric magnetic trap, the sum of the axial components of the orbital angular momentum and the hyperfine spin is conserved. Inside an Ioffe-Pritchard trap (IPT) whose magnetic field (B-field) is not axially symmetric, the difference of the two becomes surprisingly conserved. In this paper we investigate the relationship between the values of the sum/difference angular momentums for an atomic condensate inside a magnetic trap and the associated gauge potential induced by the adiabatic approximation. Our result provides significant new insight into the vorticity of magnetically trapped atomic quantum gases.Comment: 4 pages, 1 figure

    Large single crystal growth of BaFe1.87Co0.13As2 using a nucleation pole

    Full text link
    Co-doped iron arsenic single crystal of BaFe1.87Co0.13As2 with dimension up to 20 x 10 x 2 mm3 were grown by a nucleation pole: an alumina stick served as nucleation center during growth. The high quality of crystalline was illustrated by the measurements of neutron rocking curve and X-ray diffraction pattern. A very sharp superconducting transition temperature Tc~25 K was revealed by both resistivity and susceptibility measurements. A nearly 100% shielding fraction and bulk nature of the superconductivity for the single crystal were confirmed using magnetic susceptibility data.Comment: 4 pages, 5 figure

    Experimental evidence for a two-gap structure of superconducting NbSe_2: a specific heat study in external magnetic fields

    Full text link
    To resolve the discrepancies of the superconducting order parameter in quasi-two-dimensional NbSe_2, comprehensive specific-heat measurements have been carried out. By analyzing both the zero-field and mixed-state data with magnetic fields perpendicular to and parallel to the c axis of the crystal and using the two-gap model, we conclude that (1) more than one energy scale of the order parameter is required for superconducting NbSe_2 due to the thermodynamic consistency; (2)delta_L=1.26 meV and delta_S=0.73 meV are obtained; (3) N_S(0)/N(0)=11%~20%; (4) The observation of the kink in gamma(H) curve suggests that the two-gap scenario is more favorable than the anisotropic s-wave model to describe the gap structure of NbSe_2; and (5)delta_S is more isotropic and has a three-dimensional-like feature and is located either on the Se or the bonding Nb Fermi sheets.Comment: 16 pages, 4 figure

    Fast magnetization switching of Stoner particles: A nonlinear dynamics picture

    Full text link
    The magnetization reversal of Stoner particles is investigated from the point of view of nonlinear dynamics within the Landau-Lifshitz-Gilbert formulation. The following results are obtained. 1) We clarify that the so-called Stoner-Wohlfarth (SW) limit becomes exact when damping constant is infinitely large. Under the limit, the magnetization moves along the steepest energy descent path. The minimal switching field is the one at which there is only one stable fixed point in the system. 2) For a given magnetic anisotropy, there is a critical value for the damping constant, above which the minimal switching field is the same as that of the SW-limit. 3) We illustrate how fixed points and their basins change under a field along different directions. This change explains well why a non-parallel field gives a smaller minimal switching field and a short switching time. 4) The field of a ballistic magnetization reversal should be along certain direction window in the presence of energy dissipation. The width of the window depends on both of the damping constant and the magnetic anisotropy. The upper and lower bounds of the direction window increase with the damping constant. The window width oscillates with the damping constant for a given magnetic anisotropy. It is zero for both zero and infinite damping. Thus, the perpendicular field configuration widely employed in the current experiments is not the best one since the damping constant in a real system is far from zero.Comment: 10 pages, 9 figures. submitted to PR
    • …
    corecore