93,283 research outputs found

    Consequences of 't Hooft's Equivalence Class Theory and Symmetry by Large Coarse Graining

    Full text link
    According to 't Hooft (Class.Quantum.Grav. 16 (1999), 3263), quantum gravity can be postulated as a dissipative deterministic system, where quantum states at the ``atomic scale''can be understood as equivalence classes of primordial states governed by a dissipative deterministic dynamics law at the ``Planck scale''. In this paper, it is shown that for a quantum system to have an underlying deterministic dissipative dynamics, the time variable should be discrete if the continuity of its temporal evolution is required. Besides, the underlying deterministic theory also imposes restrictions on the energy spectrum of the quantum system. It is also found that quantum symmetry at the ``atomic scale'' can be induced from 't Hooft's Coarse Graining classification of primordial states at the "Planck scale".Comment: 12 papge, Late

    Projection Measurement of the Maximally Entangled N-Photon State for a Demonstration of N-Photon de Broglie Wavelength

    Full text link
    We construct a projection measurement process for the maximally entangled N-photon state (the NOON-state) with only linear optical elements and photodetectors. This measurement process will give null result for any N-photon state that is orthogonal to the NOON state. We examine the projection process in more detail for N=4 by applying it to a four-photon state from type-II parametric down-conversion. This demonstrates an orthogonal projection measurement with a null result. This null result corresponds to a dip in a generalized Hong-Ou-Mandel interferometer for four photons. We find that the depth of the dip in this arrangement can be used to distinguish a genuine entangled four-photon state from two separate pairs of photons. We next apply the NOON state projection measurement to a four-photon superposition state from two perpendicularly oriented type-I parametric down-conversion processes. A successful NOON state projection is demonstrated with the appearance of the four-photon de Broglie wavelength in the interference fringe pattern.Comment: 8 pages, 3 figures, new title, some content change, replaced Fig.

    High-Order Adiabatic Approximation for Non-Hermitian Quantum System and Complexization of Berry's Phase

    Full text link
    In this paper the evolution of a quantum system drived by a non-Hermitian Hamiltonian depending on slowly-changing parameters is studied by building an universal high-order adiabatic approximation(HOAA) method with Berry's phase ,which is valid for either the Hermitian or the non-Hermitian cases. This method can be regarded as a non-trivial generalization of the HOAA method for closed quantum system presented by this author before. In a general situation, the probabilities of adiabatic decay and non-adiabatic transitions are explicitly obtained for the evolution of the non-Hermitian quantum system. It is also shown that the non-Hermitian analog of the Berry's phase factor for the non-Hermitian case just enjoys the holonomy structure of the dual linear bundle over the parameter manifold. The non-Hermitian evolution of the generalized forced harmonic oscillator is discussed as an illustrative examples.Comment: ITP.SB-93-22,17 page

    Quantum Thermalization With Couplings

    Full text link
    We study the role of the system-bath coupling for the generalized canonical thermalization [S. Popescu, et al., Nature Physics 2,754(2006) and S. Goldstein et al., Phys. Rev. Lett. 96, 050403(2006)] that reduces almost all the pure states of the "universe" [formed by a system S plus its surrounding heat bath BB] to a canonical equilibrium state of S. We present an exactly solvable, but universal model for this kinematic thermalization with an explicit consideration about the energy shell deformation due to the interaction between S and B. By calculating the state numbers of the "universe" and its subsystems S and B in various deformed energy shells, it is found that, for the overwhelming majority of the "universe" states (they are entangled at least), the diagonal canonical typicality remains robust with respect to finite interactions between S and B. Particularly, the kinematic decoherence is utilized here to account for the vanishing of the off-diagonal elements of the reduced density matrix of S. It is pointed out that the non-vanishing off-diagonal elements due to the finiteness of bath and the stronger system-bath interaction might offer more novelties of the quantum thermalization.Comment: 4 pages, 2 figure
    • …
    corecore