107,731 research outputs found
Fast entanglement of two charge-phase qubits through nonadiabatic coupling to a large junction
We propose a theoretical protocol for quantum logic gates between two
Josephson junction charge-phase qubits through the control of their coupling to
a large junction. In the low excitation limit of the large junction when
, it behaves effectively as a quantum data-bus mode of a
harmonic oscillator. Our protocol is efficient and fast. In addition, it does
not require the data-bus to stay adiabatically in its ground state, as such it
can be implemented over a wide parameter regime independent of the data-bus
quantum state.Comment: 5 pages, 1 figur
Quantum storage and information transfer with superconducting qubits
We design theoretically a new device to realize the general quantum storage
based on dcSQUID charge qubits. The distinct advantages of our scheme are
analyzed in comparison with existing storage scenarios. More arrestingly, the
controllable XY-model spin interaction has been realized for the first time in
superconducting qubits, which may have more potential applications besides
those in quantum information processing. The experimental feasibility is also
elaborated.Comment: 4 pages, 2 figure
Phonon anomalies in pure and underdoped R{1-x}K{x}Fe{2}As{2} (R = Ba, Sr) investigated by Raman light scattering
We present a detailed temperature dependent Raman light scattering study of
optical phonons in Ba{1-x}K{x}Fe{2}As{2} (x ~ 0.28, superconducting Tc ~ 29 K),
Sr{1-x}K{x}Fe{2}As{2} (x ~ 0.15, Tc ~ 29 K) and non-superconducting
BaFe{2}As{2} single crystals. In all samples we observe a strong continuous
narrowing of the Raman-active Fe and As vibrations upon cooling below the
spin-density-wave transition Ts. We attribute this effect to the opening of the
spin-density-wave gap. The electron-phonon linewidths inferred from these data
greatly exceed the predictions of ab-initio density functional calculations
without spin polarization, which may imply that local magnetic moments survive
well above Ts. A first-order structural transition accompanying the
spin-density-wave transition induces discontinuous jumps in the phonon
frequencies. These anomalies are increasingly suppressed for higher potassium
concentrations. We also observe subtle phonon anomalies at the superconducting
transition temperature Tc, with a behavior qualitatively similar to that in the
cuprate superconductors.Comment: 5 pages, 6 figures, accepted versio
Generating entangled photon pairs from a cavity-QED system
We propose a scheme for the controlled generation of Einstein-Podosky-Rosen
(EPR) entangled photon pairs from an atom coupled to a high Q optical cavity,
extending the prototype system as a source for deterministic single photons. A
thorough theoretical analysis confirms the promising operating conditions of
our scheme as afforded by currently available experimental setups. Our result
demonstrates the cavity QED system as an efficient and effective source for
entangled photon pairs, and shines new light on its important role in quantum
information science.Comment: It has recently come to our attention that the experiment by T. Wilk,
S. C. Webster, A. Kuhn and G. Rempe, published in Science 317, 488 (2007),
exactly realizes what we proposed in this article, which is published in Phy.
Rev. A 040302(R) (2005
Two reference time scales for studying the dynamic cavitation of liquid films
Two formulas, one for characteristic time of filling a void with a vapor of the surrounding liquid, and one of filling the void by diffusion of the dissolved gas in the liquid, are derived. Based on this analysis, it is seen that in an oil film bearing operating under dynamic loads, the content of cavitation region should be oil vapor rather than the air liberated from solution, if the oil is free of entrained air
- …