195,710 research outputs found

    High-Order Adiabatic Approximation for Non-Hermitian Quantum System and Complexization of Berry's Phase

    Full text link
    In this paper the evolution of a quantum system drived by a non-Hermitian Hamiltonian depending on slowly-changing parameters is studied by building an universal high-order adiabatic approximation(HOAA) method with Berry's phase ,which is valid for either the Hermitian or the non-Hermitian cases. This method can be regarded as a non-trivial generalization of the HOAA method for closed quantum system presented by this author before. In a general situation, the probabilities of adiabatic decay and non-adiabatic transitions are explicitly obtained for the evolution of the non-Hermitian quantum system. It is also shown that the non-Hermitian analog of the Berry's phase factor for the non-Hermitian case just enjoys the holonomy structure of the dual linear bundle over the parameter manifold. The non-Hermitian evolution of the generalized forced harmonic oscillator is discussed as an illustrative examples.Comment: ITP.SB-93-22,17 page

    Phonon anomalies in pure and underdoped R{1-x}K{x}Fe{2}As{2} (R = Ba, Sr) investigated by Raman light scattering

    Full text link
    We present a detailed temperature dependent Raman light scattering study of optical phonons in Ba{1-x}K{x}Fe{2}As{2} (x ~ 0.28, superconducting Tc ~ 29 K), Sr{1-x}K{x}Fe{2}As{2} (x ~ 0.15, Tc ~ 29 K) and non-superconducting BaFe{2}As{2} single crystals. In all samples we observe a strong continuous narrowing of the Raman-active Fe and As vibrations upon cooling below the spin-density-wave transition Ts. We attribute this effect to the opening of the spin-density-wave gap. The electron-phonon linewidths inferred from these data greatly exceed the predictions of ab-initio density functional calculations without spin polarization, which may imply that local magnetic moments survive well above Ts. A first-order structural transition accompanying the spin-density-wave transition induces discontinuous jumps in the phonon frequencies. These anomalies are increasingly suppressed for higher potassium concentrations. We also observe subtle phonon anomalies at the superconducting transition temperature Tc, with a behavior qualitatively similar to that in the cuprate superconductors.Comment: 5 pages, 6 figures, accepted versio

    Hierarchical incremental class learning with reduced pattern training

    Get PDF
    Hierarchical Incremental Class Learning (HICL) is a new task decomposition method that addresses the pattern classification problem. HICL is proven to be a good classifier but closer examination reveals areas for potential improvement. This paper proposes a theoretical model to evaluate the performance of HICL and presents an approach to improve the classification accuracy of HICL by applying the concept of Reduced Pattern Training (RPT). The theoretical analysis shows that HICL can achieve better classification accuracy than Output Parallelism [1]. The procedure for RPT is described and compared with the original training procedure. RPT reduces systematically the size of the training data set based on the order of sub-networks built. The results from four benchmark classification problems show much promise for the improved model

    The spin-polarized ν=0\nu=0 state of graphene: a spin superconductor

    Full text link
    We study the spin-polarized ν=0\nu=0 Landau-level state of graphene. Due to the electron-hole attractive interaction, electrons and holes can bound into pairs. These pairs can then condense into a spin-triplet superfluid ground state: a spin superconductor state. In this state, a gap opens up in the edge bands as well as in the bulk bands, thus it is a charge insulator, but it can carry the spin current without dissipation. These results can well explain the insulating behavior of the spin-polarized ν=0\nu=0 state in the recent experiments.Comment: 6 pages, 4 figure

    Spin-current diode with a ferromagnetic semiconductor

    Full text link
    Diode is a key device in electronics: the charge current can flow through the device under a forward bias, while almost no current flows under a reverse bias. Here we propose a corresponding device in spintronics: the spin-current diode, in which the forward spin current is large but the reversed one is negligible. We show that the lead/ferromagnetic quantum dot/lead system and the lead/ferromagnetic semiconductor/lead junction can work as spin-current diodes. The spin-current diode, a low dissipation device, may have important applications in spintronics, as the conventional charge-current diode does in electronics.Comment: 5 pages, 3 figure
    corecore