97,638 research outputs found
Recommended from our members
Transition of a vortex ring measured by 3D scanning Tomo-PIV
A vortex ring with piston-based Reynolds number Rep=4650 is studied experimentally by means of time-resolved scanning tomographic PIV. The present measurement technique provides the so-called 4D flow field, thus enables revealing the vortex ring’s transition from laminar to turbulent. The evolution of the ring torus as well as the generation of secondary vortex filaments in transition are first observed through 3D visualization. Analysis on the quantities of the vortex ring, such as circulation and vorticity components, defines the three evolution phases, namely laminar, transition and turbulent. The ring median plane is also examined to provide further insights on flow structure exhibited in transition. The axial vorticity component and radial velocity component are studied respectively and they are found to be organized in a multi-layer concentric-ring pattern. Spectrum analysis on the radial velocity component along the ring core and inner ring where secondary vortical activity happens reveals the dominate wavenumber in transition and broad band of wavenumbers in turbulent phase
Phonon anomalies in pure and underdoped R{1-x}K{x}Fe{2}As{2} (R = Ba, Sr) investigated by Raman light scattering
We present a detailed temperature dependent Raman light scattering study of
optical phonons in Ba{1-x}K{x}Fe{2}As{2} (x ~ 0.28, superconducting Tc ~ 29 K),
Sr{1-x}K{x}Fe{2}As{2} (x ~ 0.15, Tc ~ 29 K) and non-superconducting
BaFe{2}As{2} single crystals. In all samples we observe a strong continuous
narrowing of the Raman-active Fe and As vibrations upon cooling below the
spin-density-wave transition Ts. We attribute this effect to the opening of the
spin-density-wave gap. The electron-phonon linewidths inferred from these data
greatly exceed the predictions of ab-initio density functional calculations
without spin polarization, which may imply that local magnetic moments survive
well above Ts. A first-order structural transition accompanying the
spin-density-wave transition induces discontinuous jumps in the phonon
frequencies. These anomalies are increasingly suppressed for higher potassium
concentrations. We also observe subtle phonon anomalies at the superconducting
transition temperature Tc, with a behavior qualitatively similar to that in the
cuprate superconductors.Comment: 5 pages, 6 figures, accepted versio
Capacity of Compound MIMO Gaussian Channels with Additive Uncertainty
This paper considers reliable communications over a multiple-input
multiple-output (MIMO) Gaussian channel, where the channel matrix is within a
bounded channel uncertainty region around a nominal channel matrix, i.e., an
instance of the compound MIMO Gaussian channel. We study the optimal transmit
covariance matrix design to achieve the capacity of compound MIMO Gaussian
channels, where the channel uncertainty region is characterized by the spectral
norm. This design problem is a challenging non-convex optimization problem.
However, in this paper, we reveal that this problem has a hidden convexity
property, which can be exploited to map the problem into a convex optimization
problem. We first prove that the optimal transmit design is to diagonalize the
nominal channel, and then show that the duality gap between the capacity of the
compound MIMO Gaussian channel and the min-max channel capacity is zero, which
proves the conjecture of Loyka and Charalambous (IEEE Trans. Inf. Theory, vol.
58, no. 4, pp. 2048-2063, 2012). The key tools for showing these results are a
new matrix determinant inequality and some unitarily invariant properties.Comment: 8 pages, submitted to IEEE Transactions on Information Theor
High-Order Adiabatic Approximation for Non-Hermitian Quantum System and Complexization of Berry's Phase
In this paper the evolution of a quantum system drived by a non-Hermitian
Hamiltonian depending on slowly-changing parameters is studied by building an
universal high-order adiabatic approximation(HOAA) method with Berry's phase
,which is valid for either the Hermitian or the non-Hermitian cases. This
method can be regarded as a non-trivial generalization of the HOAA method for
closed quantum system presented by this author before. In a general situation,
the probabilities of adiabatic decay and non-adiabatic transitions are
explicitly obtained for the evolution of the non-Hermitian quantum system. It
is also shown that the non-Hermitian analog of the Berry's phase factor for the
non-Hermitian case just enjoys the holonomy structure of the dual linear bundle
over the parameter manifold. The non-Hermitian evolution of the generalized
forced harmonic oscillator is discussed as an illustrative examples.Comment: ITP.SB-93-22,17 page
Modelling and control of the flame temperature distribution using probability density function shaping
This paper presents three control algorithms for the output probability density function (PDF) control of the 2D and 3D flame distribution systems. For the 2D flame distribution systems, control methods for both static and dynamic flame systems are presented, where at first the temperature distribution of the gas jet flames along the cross-section is approximated. Then the flame energy distribution (FED) is obtained as the output to be controlled by using a B-spline expansion technique. The general static output PDF control algorithm is used in the 2D static flame system, where the dynamic system consists of a static temperature model of gas jet flames and a second-order actuator. This leads to a second-order closed-loop system, where a singular state space model is used to describe the dynamics with the weights of the B-spline functions as the state variables. Finally, a predictive control algorithm is designed for such an output PDF system. For the 3D flame distribution systems, all the temperature values of the flames are firstly mapped into one temperature plane, and the shape of the temperature distribution on this plane can then be controlled by the 3D flame control method proposed in this paper. Three cases are studied for the proposed control methods and desired simulation results have been obtained
- …